
ARM Assembly

Lecture 4
Microprocessor-based Systems (E155)

Prof. Josh Brake

Learning Objectives for Today

By the end of this lecture you will have…
• Refreshed your knowledge of how to translate C code into ARM

assembly
• Applied your knowledge of ARM assembly to write several simple

algorithms
• Learned how to mitigate the differences between ARM v7 and Thumb-

2 code

1

Outline

• Review of ARM architecture
• Register set
• Memory
• Instruction set architecture
• Addressing modes
• Conditional execution
• Branching

• Translating C to ARM Assembly
• Lab 2

2

Warmup Quiz

3

https://docs.google.com/presentation/d/1
ShVehgj6aX2Dr44j0UIh4JXsUJaZQ8Hds
Ng32T6HZcs/edit?usp=sharing

ADD R0, R1, R2, LSL #2
SUB R0, R0, R3

int a, b, c, d; // R0, R1, R2, R3
a = b + 4*c – d;

https://docs.google.com/presentation/d/1ShVehgj6aX2Dr44j0UIh4JXsUJaZQ8HdsNg32T6HZcs/edit?usp=sharing

Key questions when learning a new microprocessor

• What is the register set?
• What addressing modes are used?
• What types of instructions exist
• What does the memory map look like?
• What I/O functions are available?

4

Cortex-M4 Instruction Set

• Similar to ARMv4, but instructions are compressed to 16-bit Thumb
instructions.
• Instructions are aligned on 2-byte (16-bit) boundaries.
• Thumb-2 instruction set architecture

5

ARM v7 Register Set

• 16, 32-bit registers R0-R15,
• R13: by convention, used as stack

pointer
• R14: link register (holds return

addresses)
• R15: serves as program counter

(PC)
• Don’t use these for other things
• 4 more condition code bits N Z C V

in the current program status
register (CPSR)

6

Memory

• Memory Map: 32-bit instruction set, byte accessible
• 232 = 4GB of memory accessible
• Instructions are always aligned on word (4-byte) boundaries in standard

ARM and halfword (2-byte) boundaries in Thumb mode

7

Assembly vs. Machine Language

• Assembler converts instructions from assembly mnemonics to
machine code
• Line-by-line comments are critical!

8

The operation the instruction performs is encoded in the fields high-
lighted in blue: op (also called the opcode or operation code) and funct
or function code; the cond field encodes conditional execution based on
flags described in Section 6.3.2. Recall that cond= 11102 for uncondi-
tional instructions. op is 002 for data-processing instructions.

The operands are encoded in the three fields: Rn, Rd, and Src2. Rn is the
first source register and Src2 is the second source;Rd is the destination register.

Figure 6.17 shows the format of the funct field and the three varia-
tions of Src2 for data-processing instructions. funct has three subfields:
I, cmd, and S. The I-bit is 1 when Src2 is an immediate. The S-bit is 1
when the instruction sets the condition flags. For example, SUBS R1,
R9, #11 has S= 1. cmd indicates the specific data-processing instruction,
as given in Table B.1 in Appendix B. For example, cmd is 4 (01002) for
ADD and 2 (00102) for SUB.

Three variations of Src2 encoding allow the second source operand to
be (1) an immediate, (2) a register (Rm) optionally shifted by a constant
(shamt5), or (3) a register (Rm) shifted by another register (Rs). For the
latter two encodings of Src2, sh encodes the type of shift to perform, as
will be shown in Table 6.8.

Data-processing instructions have an unusual immediate representa-
tion involving an 8-bit unsigned immediate, imm8, and a 4-bit rotation,
rot. imm8 is rotated right by 2 × rot to create a 32-bit constant.
Table 6.7 gives example rotations and resulting 32-bit constants for
the 8-bit immediate 0xFF. This representation is valuable because it

cond op funct Rn Rd

Data-processing

4 bits 2 bits 6 bits 4 bits 4 bits

31:28 27:26 25:20 19:16 15:12 11:0

12 bits

Src2

Figure 6.16 Data-processing
instruction format

Rd is short for “register
destination.” Rn and Rm
unintuitively indicate the first
and second register sources.

Data-processing

cond op
00 cmd

31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rn Rd

Rs sh

6:5

10

47

11:8

rot imm8

7:0

Src2 Rm

Rm

3:0

3:0

I

25

S

20

funct

I = 1

I = 0

Immediate

Register

Register-shifted
Register

Figure 6.17 Data-processing instruction format showing the funct field and Src2 variations

330 CHAPTER SIX Architecture

// a = b & c
// a in R0, b in R1, C in R2
AND R2, R0, R1

cond = 1110 (unconditional)
I = 0 (register mode)
S = 0 (doesn’t set condition codes)
Rn = R0 = 0000
Rm = R1 = 0001
Rd = R2 = 0010
Cmd = AND = 0000
Shamt5 = sh = 0
Assembles to 0xE0002001

Data processing Instructions

• ADD, SUB, ADDC, SUBC
• AND, ORR, EOR, BIC
• TST, TEQ, CMP
• MOV, MVN, LSL, LSR, ASR, ROR,

RRX

9

Data-processing

cond op cmd Rn Rd
31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rs sh
6:5

10
47

11:8

rot imm8
7:0

Src2 Rm

Rm

3:0

3:0

00 I
25

S
20

funct

I = 1

I = 0

Immediate

Register

Register-shifted
Register

Figure B.1 Data-processing instruction encodings

Table B.1 Data-processing instructions

cmd Name Description Operation

0000 AND Rd, Rn, Src2 Bitwise AND Rd ← Rn & Src2

0001 EOR Rd, Rn, Src2 Bitwise XOR Rd ← Rn ^ Src2

0010 SUB Rd, Rn, Src2 Subtract Rd ← Rn – Src2

0011 RSB Rd, Rn, Src2 Reverse Subtract Rd ← Src2 – Rn

0100 ADD Rd, Rn, Src2 Add Rd ← Rn+Src2

0101 ADC Rd, Rn, Src2 Add with Carry Rd ← Rn+Src2+C

0110 SBC Rd, Rn, Src2 Subtract with Carry Rd ← Rn – Src2 – C

0111 RSC Rd, Rn, Src2 Reverse Sub w/ Carry Rd ← Src2 – Rn – C

1000 (S = 1) TST Rd, Rn, Src2 Test Set flags based on Rn & Src2

1001 (S = 1) TEQ Rd, Rn, Src2 Test Equivalence Set flags based on Rn ^ Src2

1010 (S = 1) CMP Rn, Src2 Compare Set flags based on Rn – Src2

1011 (S = 1) CMN Rn, Src2 Compare Negative Set flags based on Rn+Src2

1100 ORR Rd, Rn, Src2 Bitwise OR Rd ← Rn | Src2

1101 Shifts:
I = 1 OR
(instr11:4 = 0)

MOV Rd, Src2 Move Rd ← Src2

I = 0 AND
(sh = 00;
instr11:4 ≠ 0)

LSL Rd, Rm, Rs/shamt5 Logical Shift Left Rd ← Rm << Src2

I = 0 AND
(sh = 01)

LSR Rd, Rm, Rs/shamt5 Logical Shift Right Rd ← Rm >> Src2

(continued)

536 APPENDIX B ARM Instructions

B . 1 . 1 Multiply Instructions

Multiply instructions use the encoding in Figure B.2 The 3-bit cmd field
specifies the type of multiply, as given in Table B.2.

Table B.1 Data-processing instructions—Cont’d

cmd Name Description Operation

I = 0 AND
(sh = 10)

ASR Rd, Rm, Rs/shamt5 Arithmetic Shift Right Rd ← Rm>>>Src2

I = 0 AND
(sh = 11;
instr11:7, 4 = 0)

RRX Rd, Rm, Rs/shamt5 Rotate Right Extend {Rd, C} ← {C, Rd}

I = 0 AND
(sh = 11;
instr11:7 ≠ 0)

ROR Rd, Rm, Rs/shamt5 Rotate Right Rd ← Rn ror Src2

1110 BIC Rd, Rn, Src2 Bitwise Clear Rd ← Rn & ~Src2

1111 MVN Rd, Rn, Src2 Bitwise NOT Rd ← ~Rn

NOP (no operation) is typically encoded as 0xE1A000, which is equivalent to MOV R0, R0.

Table B.2 Multiply instructions

cmd Name Description Operation

000 MUL Rd, Rn, Rm Multiply Rd ← Rn × Rm (low 32 bits)

001 MLA Rd, Rn, Rm, Ra Multiply
Accumulate

Rd ← (Rn × Rm)+Ra (low 32 bits)

100 UMULL Rd, Rn, Rm, Ra Unsigned Multiply
Long

{Rd, Ra} ← Rn × Rm
(all 64 bits, Rm/Rn unsigned)

101 UMLAL Rd, Rn, Rm, Ra Unsigned Multiply
Accumulate Long

{Rd, Ra} ← (Rn × Rm)+{Rd, Ra}
(all 64 bits, Rm/Rn unsigned)

110 SMULL Rd, Rn, Rm, Ra Signed Multiply
Long

{Rd, Ra} ← Rn × Rm
(all 64 bits, Rm/Rn signed)

111 SMLAL Rd, Rn, Rm, Ra Signed Multiply
Accumulate Long

{Rd, Ra} ← (Rn × Rm)+{Rd, Ra}
(all 64 bits, Rm/Rn signed)

cond cmd Rd Ra

Multiply

4 bits 2 bits 6 bits 4 bits 4 bits

31:28 27:26 23:21 19:16 15:12 7:4

Rmop
00 00 S

20

Rn1001

4 bits 4 bits

3:025:24 11:8

4 bits

Figure B.2 Multiply instruction
encoding

B.1 Data-processing Instructions 537

Data Processing Addressing Modes

Source1 (Rn) and destination are always a register
Src2 can be register or immediate. Registers can be shifted by a
constant or another register.
• Immediates are 8 bits, optionally rotated right by any multiple of two
• Registers can be shifted 4 ways (LSL, LSR, ASR, ROR) by 5-bit constant

or a register

10

Data Processing Addressing Modes: Examples

11

Ex: int a in R0, b in R1, c in R2, d in R3
a = b + c; ADD R0, R1, R2
a = b + 5; ADD R0, R1, #5
a = b + 4*c; ADD R0, R1, R2, LSL #2
a = b + c >> d; ADD R0, R1, R2, ASR R3

ARM® and Thumb®-2 Instruction Set Quick Reference Card - QRC0001_UAL (on course website)

Condition Codes

• Z: result is zero
• N: result is negative (msb = 1)
• C: adder produces a carry out
• V: adder overflows

• Data processing instructions come with S variant to set the condition
codes based on the result. Not used much.
• CMP, CMN, TST, TEQ all need S bit set (but we don’t write it in the

name)

• Stored in Current Program Status Register (CPSR)

12

CMP, CMN, TST, TEQ

• CMP is SUBS but the result is not written
• CMN is ADDS but the result is not written
• TEQ is EORS but the result is not written
• TST is ANDS but the result is not written

13

Conditional Execution in ARM v7

Do a TST or CMP, then make the
next instruction conditional

14
Other data-processing instructions will set the condition flags when the

instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥ B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥ B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

C Snippet
if (a == b) c = d + 3;

ARM Assembly
TEQ R0, R1
ADDEQ R2, R3, #3

Conditions are often used with
branches, but also allow a short bit of
code to be executed without branch

Can’t do this in Thumb-2

Conditional Execution on Thumb-2

15

if (a) b = 1;
// ARM v7
CMP R0, #0
MOVNE R2, #1

But we can’t use MOVNE in ARM Thumb-2. So what
do we do?
• Branch
• Use IT statement. Only in Thumb-2.
// ARM Thumb-2
CMP R0, #0
IT NE
MOVNE R2, #1

Conditional Execution on Thumb-2

Summary
• Can either use an “if-then” (IT) instruction or a conditional branch
• IT blocks

• Can handle up to 4 instructions
• Condition codes are not set by instructions in the IT block
• Why do this instead of branching? Avoid branching penalties.

16

Conditional Execution on Thumb-2: IT Statements

Syntax of IT Statements
IT<x><y><z><cond>
• <x>, <y>, and <z> are optional and must be either T (then) or E (else).
• <cond> is required and must reflect one of the condition codes that

are related to the bits in the Application Program Status Register
(APSR).
• Else conditions must be the opposite of the if conditions.

17

IT Statement Example

18

if (R4 == R5)
{
R7 = R8 + R9;
R7 /= 2;

}
else
{
R7 = R10 + R11;
R7 *= 2;

}

CMP R4, R5
ITTEE EQ
ADDEQ R7, R8, R9 // if R4 = R5, R7 = R8 + R9
ASREQ R7, R7, #1 // if R4 = R5, R7 /= 2
ADDNE R7, R10, R11 // if R4 != R5, R7 = R10 + R11
LSLNE R7, R7, #1 // if R4 != R5, R7 *=2

C Pseudocode

Branches

• B - branch
• BL – branch and link, saves PC+2/4 in link register LR
• BX/BLX – branch/branch and link + exchange instruction set (from ARM

to Thumb mode or vice versa)

19

Memory Addressing

LDR, STR, LDRB, STRB, LDRSB

Rd is destination for loads,
source for stores
Rn is base address
Src2 is offset. Can be 12-bit
immediate or register with
optional constant shift

20

C Snippet
unsigned char a[32]; // a in R0
unsigned char b; // b in R1

b = a[6];

ARM Assembly
LDRB R1, [R0, #6]

Let a hold the base address of an array of unsigned bytes:

C Snippet
int a[40]; // a in R0
int b, c; // b in R1, C in R2

b = a[c];

ARM Assembly
LDR R1, [R0, R2, LSL #2]

Translating C snippets to assembly: Arithmetic

21

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
a = b + c; ADD R0, R1, R2

C Snippet ARM Assembly
a = b + 2*c – d; ADD R0, R1, R2, LSL #1

SUB R0, R0, R3

C Snippet ARM Assembly
a = d / 4; ASR R0, R3, #2 // would be LSR if D were unsigned

Translating C snippets to assembly: Logical

22

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
a = b & c; AND R0, R1, R2

C Snippet ARM Assembly
a = b | c; ORR R0, R1, R2

C Snippet ARM Assembly
a = b ^ c; EOR R0, R1, R2

Translating C snippets to assembly: Shift

23

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
a = b << 4; LSL R0, R1, #4

C Snippet ARM Assembly
a = b >> c; ASR R0, R1, R2

Translating C snippets to assembly: If

24

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
if (a != b) c = d; TEQ R0, R1

IT NE
MOVNE R3, R4

C Snippet ARM Assembly
if (a) c = 3; CMP R0, #0

IT NE
MOVNE R3, #3

C Snippet ARM Assembly
If (a <= b) { do stuff 1} CMP R0, R1

BGT around
// stuff 1 goes here

around:

Translating C snippets to assembly: If

25

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
if (a > b) { do stuff 1}
else { do stuff 2}

CMP R0, R1
BLE else
// stuff1 goes here
B done

else:
// stuff2 goes here

done:

Translating C snippets to assembly: If

26

int a, b, c, d; // R0, R1, R2, R3

C Snippet ARM Assembly
if (a > b) c = 1;
else c = 0;

// ARM Thumb-2
CMP R0, R1
ITE GT
MOVGT R2, #1
MOVLE R2, #0

Translating C snippets to assembly: For

27

int sum; // R0
int i; // R1

C Snippet ARM Assembly
sum = 0;
for (i=0; i<10; i++) sum = sum + i;

MOV R0, #0
MOV R1, #0

loop: CMP R1, #10
BGE done
ADD R0, R0, R1
ADD R1, R1, #1
B LOOP

done:

Translating C snippets to assembly: For

28

int i, j; // R1, R2
int q; // R3

C Snippet ARM Assembly
for (i=2; i<8; i++)
for (j=1; j<i; j++)
q = q + i – j;

MOV R1, #2
loopi:
CMP R1, #8
BGE donei
MOV R2, #1

loopj:
CMP R2, R1
BGE donej
ADD R3, R3, R1
SUB R3, R3, R2
ADD R2, R2, #1
B loopj

donej:
ADD R1, R1, #1
B loopi

donei:

Translating C snippets to assembly: For

29

unsigned int a1[20], a2[20]; // in R4, R5

C Snippet ARM Assembly
for (i=0; i<20; i++) a1[i] = a2[i] / 2; MOV R1, #0

loop:
CMP I, #20
BGE done
LDR R6, [R4, R1, LSL #2]
LSR R6, R6, #1
STR R6, [R5, R1, LSL #2]
ADD R1, R1, #1
B loop

done:

Translating C snippets to assembly: While

30

unsigned int a1[20], a2[20]; // in R4, R5

C Snippet ARM Assembly
int i = 1;
int j = 0;

while (i <= 2048) {
a1[j++] = i;
i = i * 2;

}

MOV R1, #1
MOV R2, #0

while:
CMP R1, #2048 // legal because this can be represented
BGT done
STR R1, [R4, R2]
ADD R2, R2, #1
LSL R1, R1, #1
B while

Translating C snippets to assembly: String Copy

31

char str1[64], str2[64]; // R4, R5

C Snippet ARM Assembly
int i = 0;
do {
str2[i] = str1[i];

} while (str1[i++]);

MOV R1, #0
do:
LDRB R6, [R4, R1]
STRB R6, [R5, R1]
CMP R6, #0
ADD R1, R1, #1
BNE do

Lab 2 Starter Code

32

Lab 2 Linker Script

33

SECTIONS
{
. = 0x08000000; /* From 0x08000000, the start of flash memory */
/* This address is mapped to 0x00000000 because */
/* BOOT0 = 0 (p. 41 RM0368) */

.text :
{
(vectors) / Vector table */
(.text) / Program code */
}
.rodata :
{
(.rodata) / Read only data */
}
_DATA_ROM_START = .; /* Store the current location as _DATA_ROM_START */

sort_linker.ld

Lab 2 Linker Script continued

34

. = 0x20000000; /* From 0x20000000 */

_DATA_RAM_START = .; /* Store the current location as _DATA_RAM_START */
.data : AT(_DATA_ROM_START)
{
(.data) / Data memory */
}
_DATA_RAM_END = .;

_BSS_START = .; /* Indicates where BSS section starts in RAM */
.bss :
{
(.bss) / Zero-filled run time allocate data memory */
}
_BSS_END = .; /* Indicates where BSS section ends in RAM */
}

sort_linker.ld

Lab 2 Startup Code

35

extern unsigned int _DATA_ROM_START;
extern unsigned int _DATA_RAM_START;
extern unsigned int _DATA_RAM_END;
extern unsigned int _BSS_START;
extern unsigned int _BSS_END;

#define STACK_TOP 0x20018000 // 96 KB of
void startup();

/* Define minimal vector table. First entry is the address of the top of the
* stack and the second one is the address of the "reset handler" function
*/
unsigned int * myvectors[2]
/* __attribute (section("section-name")) makes sure that this gets assembled
* into a section with the name "vectors". This section label is used later
* in our linker script to make sure these get put in the right spot.
*/
__attribute__ ((section("vectors")))= {
(unsigned int *) STACK_TOP, // stack pointer
(unsigned int *) startup // code entry point
};

void main(); // Function prototype declaration for sort function

startup.c

Lab 2 Startup Code

36

void startup() {
/* Copy data belonging to the `.data` section from its
* load time position on flash (ROM) to its run time position
* in SRAM. */
unsigned int * data_rom_start_p = &_DATA_ROM_START;
unsigned int * data_ram_start_p = &_DATA_RAM_START;
unsigned int * data_ram_end_p = &_DATA_RAM_END;

while(data_ram_start_p != data_ram_end_p) {
*data_ram_start_p = *data_rom_start_p;
data_ram_start_p++;
data_rom_start_p++;

}

/* Initialize data in the `.bss` section to zeros. */
unsigned int * bss_start_p = &_BSS_START;
unsigned int * bss_end_p = &_BSS_END;

while(bss_start_p != bss_end_p) {
*bss_start_p = 0;
bss_start_p++;
}
/* Call the `main()` function defined in `sort.s`.*/
main();
}

startup.c

Lab 2 Starter Code

// sort.s
// Main sort function template
// jbrake@hmc.edu
// 6/23/20

// Directives
.syntax unified // Specify the syntax for the file
.cpu cortex-m4 // Target CPU is Cortex-M4
.fpu softvfp // Use software libraries for floating-point operations
.thumb // Instructions should be encoded as Thumb instructions

// Define main globally for other files to call
.global main

37

Lab 2 Starter Code

// Create test array of bytes. Change this for different test cases.
// This will get loaded to the RAM by the startup code (address 0x20000000)
.data
arr:

.byte 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
.size arr, .-arr

.text
// The main function
.type main, %function
main:

ldr r3, =arr // Load the base address of RAM where the array is stored
// YOUR CODE HERE

done:
b done

.size main, .-main

38

Summary

39

By the end of this lecture you will have…
• Refreshed your knowledge of how to translate C code into ARM

assembly
• Applied your knowledge of ARM assembly to write several simple

algorithms
• Learned how to mitigate the differences between ARM v7 and Thumb-

2 code

Lecture Feedback

• What is the most important thing
you learned in class today?
• What point was most unclear

from lecture today?

40

https://forms.gle/9K9dAhdf61iunoEu7

https://forms.gle/9K9dAhdf61iunoEu7

