
C Programming

Lecture 2
Microprocessor-based Systems (E155)

Prof. Josh Brake

Outline

• Background and history
• Review of C concepts

• Data types
• Comments
• Operators
• Global and local variables
• Control flow constructs
• Pointers
• Arrays
• Characters
• Strings
• Inline assembly

• Direct hardware access
• Libraries

• Building a program
• Lab 1 Hints

1

C Review Quiz!

2

https://pollev.com/joshbrake155

Background

• Formally introduced in 1978 in The C Programming
Language by Kernighan and Ritchie.

• In 1989 the American National Standards Institute
(ANSI) expanded and standardized the language which
became known as ANSI C, Standard C, or C89.

• The International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC)
adopted the standard shortly after and updated the
standard in 1999 to C99.

• Since C99, there have been two new standards
introduced: C11 and C18. C2X is currently in
development. Here

3

Why C?

• Code efficiency
• Low-level control
• More readable and portable than assembly
• Many free C compilers available
• Can be very close to the same performance as optimized assembly

4

Review DDCA ARMed Chapter 9

Data types on a 32-bit architecture

5

Type Size in bits Natural alignment in bytes Range of values

char 8 1 (byte-aligned) 0 to 255 (unsigned) by default.
–128 to 127 (signed) when compiled with --signed_chars.

signed char 8 1 (byte-aligned) –128 to 127

unsigned char 8 1 (byte-aligned) 0 to 255

(signed) short 16 2 (halfword-aligned) –32,768 to 32,767

unsigned short 16 2 (halfword-aligned) 0 to 65,535

(signed) int 32 4 (word-aligned) –2,147,483,648 to 2,147,483,647

unsigned int 32 4 (word-aligned) 0 to 4,294,967,295

(signed) long 32 4 (word-aligned) –2,147,483,648 to 2,147,483,647

unsigned long 32 4 (word-aligned) 0 to 4,294,967,295

(signed) long long 64 8 (doubleword-aligned) –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

unsigned long long 64 8 (doubleword-aligned) 0 to 18,446,744,073,709,551,615

float 32 4 (word-aligned) 1.175494351e-38 to 3.40282347e+38 (normalized values)

double 64 8 (doubleword-aligned) 2.22507385850720138e-308 to 1.79769313486231571e+308 (normalized values)

long double 64 8 (doubleword-aligned) 2.22507385850720138e-308 to 1.79769313486231571e+308 (normalized values)

All pointers 32 4 (word-aligned) Not applicable.

Data types on 32-bit architecture

Be careful, sizes are implementation specific! The C standard only
guarantees that a byte is at least 8 bits.

Solutions:
• Use <stdint.h> for defined integer sizes. (e.g., defines intN_t for an

N bit signed, twos-complement integer)
• Check data sizes with sizeof()
• Use CHAR_BIT macro in <climits.h>

6

Comments

Comments can begin with /* and end with */. They can span multiple
lines. Comments can also begin with // and terminate at the end of the
line.

// this is an example of a one-line comment.

/* this is an example
Of a multi-line comment */

7

Operators

8

Category Name Symbol
Monadic Post-increment ++

Post-decrement --
Address &
Bitwise NOT ~
Type cast (type)
Logical NOT !
Negation -
Pre-increment ++
Pre-decrement --
Size of data sizeof()

Multiplicative Modulus %
Multiply *
Divide /

Additive Add +
Subtract -

Bitwise Shift Shift left <<
Shift right >>

Relational Less than <
Less than or equal <=
Greater than >
Greater than or equal >
Equal to ==
Not equal to !=

Bitwise AND &
XOR ^
OR |

Logical AND &&
OR ||

Ternary Conditional ? :
Assignment Equal =

Other arithmetic +=, -=, *=, /=, %=
Other shift >>=, <<=
Other bitwise &=, |=, ^=

Decreasing Precedence

e.g., Multiplication is
evaluated before addition,
which is evaluated before
bitwise shifts.

When in doubt, use
parentheses to specify
what you mean!

Global and local variables

• A global variable is declared outside of all the functions (normally at
the top of a program) and can be accessed by all functions.

• A local variable is declared inside a function and can only be used by
that function.

• Use global variables sparingly because they make large programs
more difficult to read.

9

Local Variables

int test_func(void) {
int a = 5;
int b = 7;

int c = a + b;
return c;

};

Global Variables

int a = 5;
int b = 7;

int test_func(void) {
int c = a + b;
return c;

};

Control flow structures

• if/else
• while loops
• do-while loops
• for loops

10

if/else

int bigger(int a, int b) {
if (a > b) return a;
else return b;

}

11

While loops

void main(void) {
int i = 0, sum = 0;

// add the numbers from 0 to 9
while (i < 10) { // while loops check condition before executing body

sum = sum + i;
i++;

}
}

12

Do-while loops

void main(void) {
int i = 0, sum = 0;

// add the numbers from 0 to 9
do {

sum = sum + i;
i++;

} while (i < 10); // do loops check condition after executing body
}

13

For loops

void main(void) {
int i;
int sum = 0;

// add the numbers from 0 to 9
for (i=0; i<10; i++) {

sum += i;
}

}

14

Pointers

• A pointer is the address of a variable.
• How big is a pointer?
• In a variable declaration, a * before a variable name indicates that the

variable is a pointer to the declared type.
• In a variable use, the * operator dereferences a pointer, returning the

value at the given address. The & operator is read “address of,” giving
the address of the variable being referenced.

15

Pointer example

The compiler will assign arbitrary locations in RAM for these variables.
For the sake of concreteness, suppose salary1 is at addresses 0x40-
43, salary2 is at addresses 0x44-47 and ptr is at 0x48-51.

16

unsigned long salary1, salary2; // 32-bit numbers
unsigned long *ptr; /* a 32-bit pointer specifying the address of an

unsigned long variable */

salary1 = 67500; // assign salary1 to be $67500 = 0x000107AC
ptr = &salary1; // assign ptr to be 0x0040, the address of salary1
salary2 = *ptr + 1000; /* dereference ptr to give the contents of address 40 =

67500, then add $1000 and set salary2 to $68500 */

Pointer example

17

RAM Address Contents Notes
0x040 AC LSB of salary1
0x041 07
0x042 01
0x043 00 MSB of salary1
0x044 94 LSB of salary2
0x045 0B
0x046 01
0x047 00 MSB of salary2
0x048 40 LSB of ptr
0x049 00
0x050 00
0x051 00 MSB of ptr

Little endian

Arrays

• An array is a group of variable stored in consecutive addresses in
memory.

• An array is referred to by the address of the 0th element.
• Warning! The programmer is responsible for making sure they don’t

access elements beyond the limits of the array. The code will compile
fine but give you weird bugs!

18

Array Example

In the following example, suppose we have an array indicating how many
wombats crossed the road each hour for each of the past 10 hours. Suppose
the 0th element is stored at address 0x20.

19

int wombats[10]; // array of 10 4-byte quantities stored at 0x20-0x47.
int *wombptr; // a pointer to an integer

wombats[0] = 342; // store 342 in addresses 0x20-23
wombats[1] = 9; // store 9 in addresses 0x24-27
wombptr = &wombats[0]; // wombptr = 0x020
(wombptr+4) = 7; / offset of 4 elements, or 16 bytes. Thus addresses 0x36-39 = 7,

so this is another way to write wombats[4] = 7. */

Characters

• Characters (char) are byte sized variables. On almost every system they will be 8-
bits.

• Can be viewed either as a number between -128 and 127 or as an ASCII code for a
letter, digit, symbol, etc.

• Can be specified as a numeric value (in decimal, hexadecimal, etc.) or as a printable
character in single quotes.

• For example, the letter A has the ASCII code 0x41, B=0x42, etc. Thus 'A' + 3 is
0x44, or 'D’.

• Special characters include:
• '\r': carriage return (when you press the enter key)
• '\n': new line
• '\t': tab
• 0x00 : null character used to terminate strings

20

Strings

• A string is an array of characters.
• Each character is a byte representing the ASCII code.
• The array size is the maximum size, but the actual length could be

shorter.
• In C, the length of the string is determined by looking for a null

character (0x00) at the end of the string.

21

void strcpy(char *src, char *dst)
{

int i = 0;

do {
dst[i] = src[i]; // copy characters one byte at a time

} while (src[i++] != NULL); // until the NULL terminator is found
}

Inline assembly

• Occasionally you might want to include assembly code in parts of your
program.

• It is possible with the GNU toolchain to include inline assembly, but
you should use it sparingly as the compiler will not optimize your code.

• Begin a block of assembly code with __asm__ or asm.

22

NOP example
__asm__("mov r0,r0");

General Format

__asm__(
code
: output operand list
: input operand list
: clobber list
);

http://www.ethernut.de/en/documents/arm-inline-asm.html

http://www.ethernut.de/en/documents/arm-inline-asm.html

Direct hardware access

• You may access most special function registers by the names
given in the MCU’s user manual by including the header file
stm32f401xe.h. (We’ll talk more about this when we discuss
the Cortex Microcontroller Software Interface Standard)

23

#define FLASH_BASE 0x08000000UL /*!< FLASH(up to 1 MB) base address in the alias region */
#define SRAM1_BASE 0x20000000UL /*!< SRAM1(96 KB) base address in the alias region */
#define PERIPH_BASE 0x40000000UL /*!< Peripheral base address in the alias region */
#define SRAM1_BB_BASE 0x22000000UL /*!< SRAM1(96 KB) base address in the bit-band region */
#define PERIPH_BB_BASE 0x42000000UL /*!< Peripheral base address in the bit-band region */
#define BKPSRAM_BB_BASE 0x42480000UL /*!< Backup SRAM(4 KB) base address in the bit-band region */
#define FLASH_END 0x0807FFFFUL /*!< FLASH end address */
#define FLASH_OTP_BASE 0x1FFF7800UL /*!< Base address of : (up to 528 Bytes) embedded FLASH OTP Area */
#define FLASH_OTP_END 0x1FFF7A0FUL /*!< End address of : (up to 528 Bytes) embedded FLASH OTP Area */

STM32F401RE Datasheet p. 51, Fig. 15

Libraries

• Libraries in C are combination of header (.h) and source (.c) or
partially compiled object (.o) files which provide various functions.

• Headers provide function declarations and macro definitions.
• Source code provides function implementations.
• Some frequently used C libraries

• stdio.h - standard input and output. Contains functions like printf or
fprintf.

• stdlib.h – standard library: random number generation (rand and
srand), allocating or freeing memory (malloc and free).

• math.h – math library: standard math functions like sin, cos, sqrt, log,
exp, floor, ceil.

• string.h – string library: functions to compare, copy, concatenate, and
determine the length of a string.

24
Q: Why do we need two separate files for the code?

Structures

• Structures are used to store a collection of data of various types

25

Basic Declaration

struct name {
type1 element1;
type2 element2;
...

};

Example

struct contact {
char name[30];
int phone;
float height; // in meters

};

GPIO Structure from STM32 Registers

26

typedef struct
{
__IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */
__IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */
__IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */
__IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
__IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */
__IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */
__IO uint32_t BSRR; /*!< GPIO port bit set/reset register, Address offset: 0x18 */
__IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */
__IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
} GPIO_TypeDef;

STM32F401RE Reference Manual p.164

#define __IO volatile

Common C idioms for low-level access

• Setting/clearing bits

28

GPIOA_MODER |= (1 << 3) Set bit 3 of the GPIOA_MODER to 1.

Clear bit 7 of the GPIOA_MODER (i.e., set to 0)

#define GPIOA_BASE 0x40020000
#define GPIOA_MODER (*((volatile unsigned long *) (GPIOA_BASE + 0x00)))

See Yiu Chapter 2.7

GPIOA_MODER &= ~(1 << 7)

Common C idioms for low-level access

29

0 0 0 0 0 0 0 10x01

0 0 0 0 1 0 0 00x01 << 3

1 1 1 1 0 1 1 1~(0x01 << 3)

A few examples…

• Setting/clearing bits

GPIOA_MODER |= (1 << 3) Set bit 3 of the GPIOA_MODER to 1.

GPIOA_MODER &= ~(1 << 7) Clear bit 7 of the GPIOA_MODER (i.e., set to 0)

#define GPIOA_BASE 0x40020000
#define GPIOA_MODER (*((volatile unsigned long *) (GPIOA_BASE + 0x00)))

|= vs. &=

Accessing values from structs

<ptr>-><member> is equivalent to (*<ptr>).<member>

30

// Base addresses for GPIO ports
#define GPIOA_BASE (0x40020000U)

// GPIO register structs here
typedef struct {
volatile uint32_t GPIO_MODER; // GPIO Offset 0x00 GPIO port mode register
volatile uint32_t GPIO_OTYPER; // GPIO Offset 0x04
volatile uint32_t GPIO_OSPEEDR; // GPIO Offset 0x08
volatile uint32_t GPIO_PURPDR; // GPIO Offset 0x0C
volatile uint32_t GPIO_IDR; // GPIO Offset 0x10
volatile uint32_t GPIO_ODR; // GPIO Offset 0x14
volatile uint32_t GPIO_BSRR; // GPIO Offset 0x18
volatile uint32_t GPIO_LCKR; // GPIO Offset 0x1C
volatile uint32_t GPIO_AFRL; // GPIO Offset 0x20
volatile uint32_t GPIO_AFRH; // GPIO Offset 0x24
} GPIO;

// Pointers to GPIO-sized chunks of memory for each peripheral
#define GPIOA ((GPIO*) GPIOA_BASE)

// Read value
int pin_value = ((GPIOA->GPIO_IDR) >> pin) & 1;

Lab 1 Hints/Questions

Learning Objectives

By the end of this lab you will have:

• Configured a Docker container with a working GNU toolchain to
target ARM devices

• Compiled and uploaded bare metal C and ARM assembly code on the
STM32F401RE development board

• Written a makefile to simplify the process of compiling programs

• Debugged a program using the GNU debugger GDB

• Written a simple C library to control GPIO pins and blink an onboard
LED on the Nucleo board

Requirements

• Write a library in C to control the GPIO pins on your board. Your library
should contain the following functions and use bitfield structs to interact
with the memory-mapped registers for the GPIO pins:
• pinMode
• digitalWrite
• digitalRead

• Write a main function to blink the onboard user LED LD2 at ~2 Hz. (Hint:
search in the documentation to find what GPIO pin this LED is connected to.)

• Write a makefile to automate the building of your source code.

• Use the oscilloscope functionality of your ADALM2000 to measure the
exact LED blinking frequency.

33

Lab 1 GPIO structure

34STM32F401RE Reference Manual p. 147

Lab 1 Hints

• Refer to the documentation to see what registers need to be
configured (reference manual is your friend!).

• Steps to initialize GPIO as output
1. Turn on clock to peripheral by configuring the peripheral clock settings

in the Reset and clock control (RCC) settings. To do this, set the right bit
to 1 in RCC_AHB1ENR.

2. Configure pin mode using GPIOA_MODER register to set the pin as an
output (0b01).

3. Write the output using either the output data register (GPIOx_ODR) or
the port bit set/reset register (GPIOx_BSRR).

35

GPIO Mode Register

36

Interfacing with the board

• Find GPIO pin that LD1 (user
LED) is connected to (Nucleo
user manual p. 23)

37

Feedback

38

• What is the most important thing you learned in class today?
• What point was most unclear from lecture today?

https://pollev.com/joshbrake155

Summary

• I will hold office hours for this week tomorrow afternoon on Zoom
1:30—2:30 (not permanent time).

• Lab demo of ADALM2000 and Scopy after this!

39

