Welcome and Introduction

Lecture 1 Microprocessor-based Systems (E155) Prof. Josh Brake

Outline

- Course learning objectives
- Administrative details
 - Syllabus
 - Schedule
 - Important links and information
 - Labs and Checkoffs
- Final Project
- Embedded System Introduction

Learning Objectives

Embedded systems expertise

- Use an ARM-based microcontroller to interface with the real world via sensors and actuators.
- Build an embedded system project of your own design from the ground up.
- Select appropriate embedded hardware for a given task.
- Read and understand complicated datasheets at a level that enables you to incorporate them into your designs.

Debugging and systems engineering

• Effectively and efficiently debug electrical systems with measurement tools such as an oscilloscope and logic analyzer.

Communication

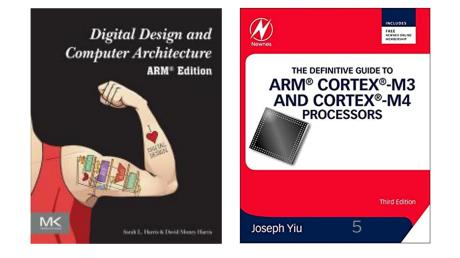
• Clearly communicate technical results in a professional manner both through oral presentations and written reports.

Class Norms & Expectations

- Try to stay focused and engaged I will do my best to make the lectures engaging and mix in activities.
- Use the chat or raise hand feature to ask questions I want to hear your feedback and questions!
- If you are able, keep your video on.
- Collaboration
 - Attempt everything on your own first, but don't be afraid to ask for help!
 - Ask questions on Slack
 - Use Zoom rooms as collaborative lab workspaces
 - Create Github issues or pull requests for any bugs in code

Important Information

- Course website: http://pages.hmc.edu/brake/class/e155/
- Email list: eng-155@g.hmc.edu
- Slack Workspace: <u>micropsfa20.slack.com</u>

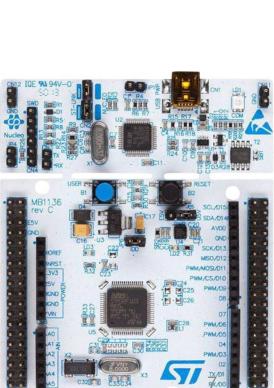

Office hours TBD based on clinic scheduling

Course Texts

No official textbook, but a few helpful references:

- Sarah L. Harris and David Money Harris, Digital Design and Computer Architecture: ARM[©] Edition
- Joseph Yiu, The Definitive Guide to ARM[®] Cortex[®]-M3 and Cortex[®]-M4 Processors, 3rd Edition

Both books available for free as e-books through the library.

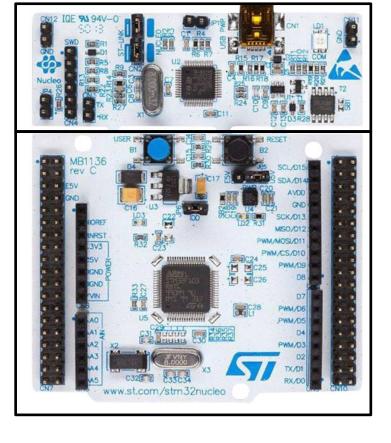


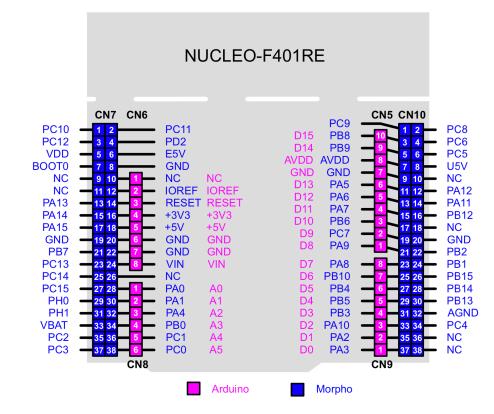
Tentative Course Schedule

Week	Monday Lecture	Wednesday Lecture	Due
8/24	Intro and Overview	C Programming	(Lab Demos)
8/31	Toolchains	ARM Assembly Programming	Lab 1
9/7	STM32 Datasheet	Memory-mapped I/O	Lab 2
9/14	Processor Core	Peripherals	Lab 3
9/21	Interrupts	Common Digital Structures	Lab 4
9/28	Serial Interfaces	Internet of Things	Lab 5
10/5	Project Kickoff	ARM CMSIS	Lab 6
10/12	Digital Signal Processing	How to pick a micro	Lab 7
10/19	Custom Board Bringup	Motors and Speakers	Project Proposal
10/26	Graphics and Displays	Bootloaders	Proposal Debriefs
11/2	Digital Business	Advanced MCU Topics	
11/9	Patents and Intellectual Property	TBD	Project Status Report & Demo
11/16	TBD	Presentations	
11/23	Presentations	Happy Thanksgiving! No class	
11/30	Presentations	Presentations	Project Checkoffs & Final Demos Due

Kit

- ADALM2000
- Nucleo F401RE ARM Development Board
- Basic components kit (wires, resistors, capacitors, etc.)... and apparently no breadboard!
- External peripherals
 - LM 386 audio amplifier and speaker
 - Digital-to-analog convertor (DAC) integrated circuit
 - WiFi module (ESP8266)
 - Temperature sensor
 - Microphone

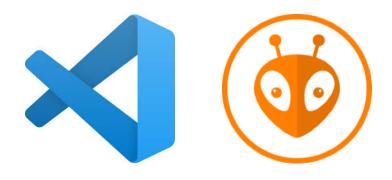

Scopy



Nucleo-F401RE

ST-LINK

MCU and headers



Labs Overview

- Lab 1 The GNU Toolchain
- Lab 2 ARM Assembly Sort
- Lab 3 Digital Audio
- Lab 4 Serial Peripheral Interface
- Lab 5 Pulse Width Modulation
- Lab 6 Serial Temperature Sensor
- Lab 7 The Internet of Things

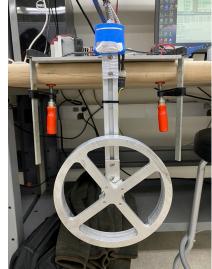
Docker (Labs 1-2)

VSCode & PlatformIO (Labs 3-7)

Lab Checkoffs

- Check the website for a link to the Google Sheet schedule and sign up by the end of this week. Try to find a time during your scheduled lab day.
- Weekly 10 min meeting on Zoom where you present your lab. Please join the waiting room a few minutes before your scheduled time.
- Submit lab writeup (.pdf) and supporting files (links to movies or photos) to Sakai ahead of time.
- Grading
 - Demonstration of the lab (screen share and/or show in front of camera)
 - Interactive grading of the report
 - Fault tolerance question a general question about a concept related to the lab. Good interview practice!

Drawing good schematics


- Make sure everything is neat and clear. Someone should be able to replicate your design with just the schematic.
- Tips
 - Label pin names AND numbers.
 - Don't need to go over the top with fancy computer drawn schematics, neat hand-drawn diagrams are fine.
 - Make sure you put values for all the components (e.g., resistor and capacitor values)

Final Project

- Start thinking about it early (i.e., now!)
- Teams of 2
- Project requirements
 - Use MCU to do something fun or useful
 - Incorporate new piece of hardware
 - Use advanced features of MCU
- Make sure it is feasible but not trivial.
- Key learning outcome is designing a system and delivering what you promise.

Embedded System Design

Embedded Systems

- What is an embedded system?
- What is a common field where embedded systems are used?
- What is an example of an embedded system you use regularly?

https://pollev.com/joshbrake155

What is an embedded system?

Embedded systems are information processing systems embedded into a larger product

	Embedded	PC-/Server-like				
Architectures	Frequently heterogeneous very compact	Mostly homogeneous not compact (×86 etc.)				
×86 compatibility	Less relevant	Very relevant				
Architecture fixed?	Sometimes not	Yes				
Model of computation (MoCs)	C+multiple models (data flow, discrete events,)	Mostly von Neumann (C, C++, Java)				
Optimization objectives	Multiple (energy, size,)	Average performance dominates				
Safety-critical?	Possibly	Usually not				
Real-time relevant	Frequently	Hardly				
Applications	Guarantees for several concurrent apps. needed	Best effort approaches to run application				
Apps. known at design time	Yes, for real-time systems	Only some (e.g., WORD)				

Table 1.2	Distinction	between	PC-like and	embedded	system d	esign

Marwedel, Peter. Embedded System Design. Springer, 2018.

What are some common fields where embedded systems are used?

- Transportation
- Factory automation •
- Health •
- Smart buildings
- Smart grid
- Scientific experiments
- Public safety •
- Structural health monitoring
- Disaster recovery •
- Robotics •

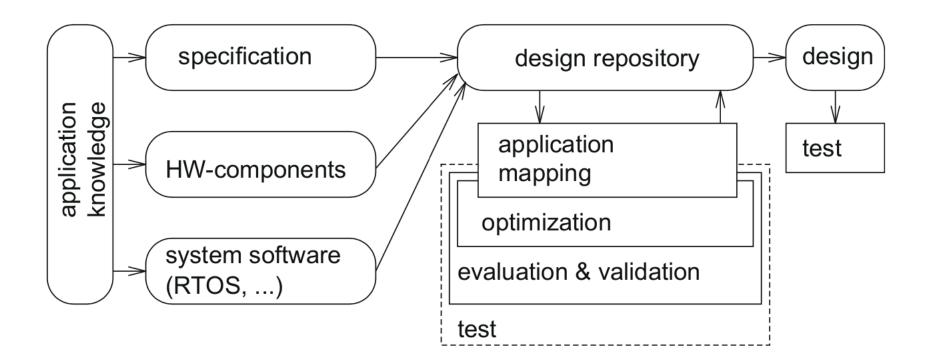
- Military ٠
 - Telecommunication

Agriculture

- **Consumer electronics**
- . . .

Marwedel, Peter. Embedded System Design. Springer, 2018.

Challenges


Dependability

- Safety
- Security
- Confidentiality
- Reliability
- Repairability
- Availability

Resource Awareness

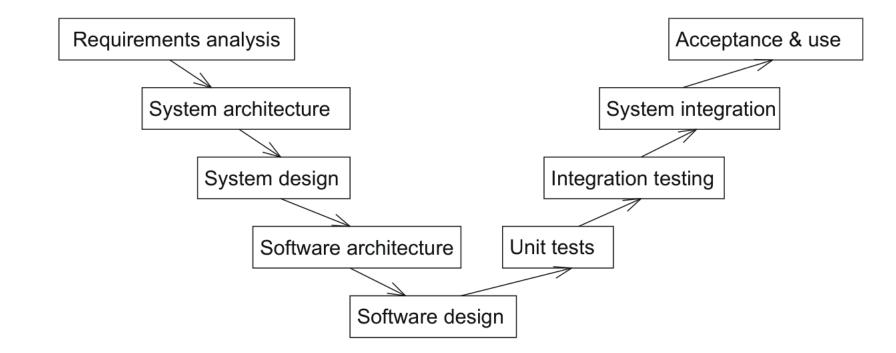
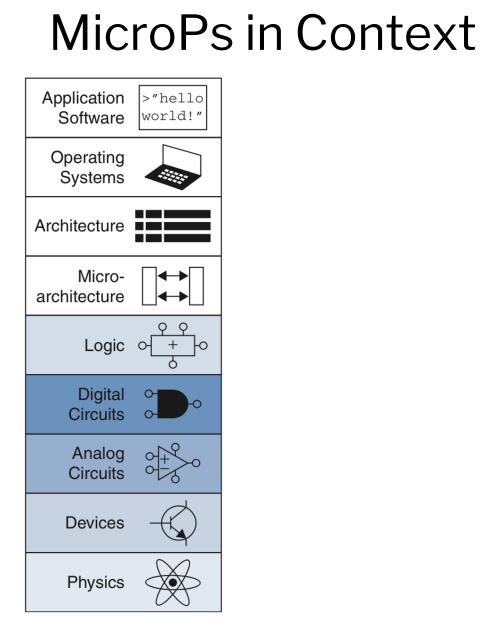
- Energy
- Run-time
- Code size
- Weight
- Cost

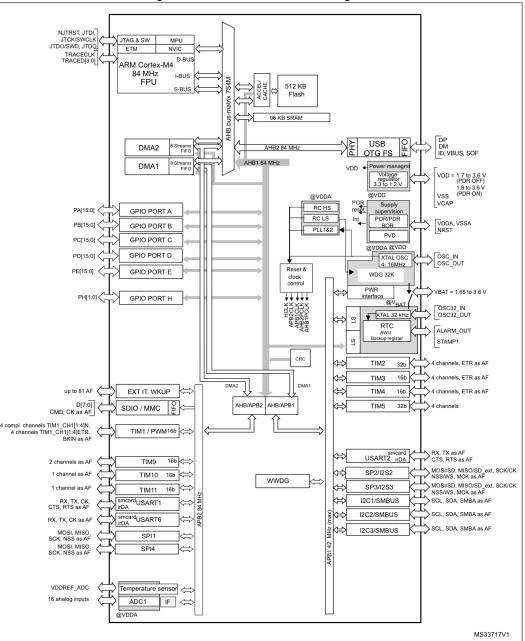
Design Flow

Fig. 1.8 Simplified design information flow

Marwedel, Peter. Embedded System Design. Springer, 2018.

Design Flow - Unfolded


Fig. 1.10 Design flow for the V-model

Marwedel, Peter. Embedded System Design. Springer, 2018.

From DDCA ARM edition

Figure 3. STM32F401xD/xE block diagram

MicroPs in Context

- Focus on learning general concepts specifics are obsolete tomorrow!
- Some core concepts endure
 - Understanding device layout and how to read documentation
 - Memory-mapped I/O
 - Peripheral configuration flow
 - Clock configuration
 - Peripherals
 - UART
 - SPI
 - Timers
 - PWM

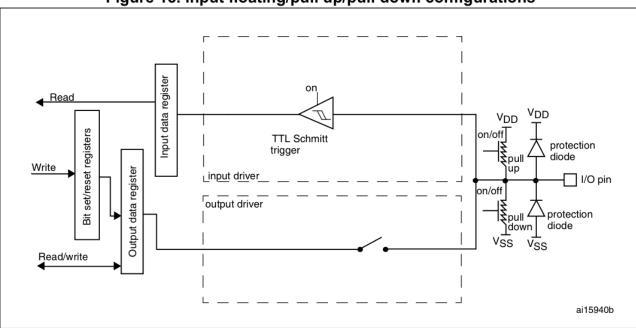


Figure 18. Input floating/pull up/pull down configurations

STM32F401RE - RM0368 Reference manual p.154

Survey results

- Reasons for excitement
 - Getting to build project
 - Learn more "lower level" embedded systems programming
 - Build on E85 knowledge
 - Optimization and processor architectures
- Reasons for concern
 - Troubleshooting Slack if you get stuck
 - Collaboration and group work suggest Zoom rooms for when you are working
 - Time management start labs early; suggest a multi-pass approach
 - Broken kit components
 - Final project post ideas on Slack and brainstorm with others

For next time...

- Look at lab 1
- Set up software on your computer to make sure everything installs properly
 - Docker
 - OpenOCD
 - VSCode & PlatformIO
- Wednesday lecture C programming!