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Abstract
TED talks are the pinnacle of public speaking. They combine
compelling content with flawless delivery, and their popularity
is attested by the millions of views they attract. In this work, we
compare the prosodic voice characteristics of TED speakers and
university professors. Our aim is to identify the characteristics
that separate TED speakers from other public speakers. Based
on a simple set of features derived from pitch and energy, we
train a discriminative classifier to predict whether a 5 minute
audio sample is from a TED talk or a university lecture. We
are able to achieve < 10% equal error rate. We then investigate
which features are most discriminative, and discuss conflating
factors that might contribute to those features.
Index Terms: prosody, public speaking, lectures, TED

1. Introduction
This paper investigates a question that many academics have
surely thought about while listening to a talk at a conference:
“Why is this talk so incredibly boring?” And, more generally,
“Why are so many academic talks so boring?” To this end, we
will compare two groups of speakers – university professors and
TED speakers – and try to identify and understand any consis-
tent prosodic differences between the two groups. We will focus
our study solely on how a person speaks (prosody), not on what
they say (content). Given that TED talks are watched by mil-
lions of viewers, we can treat them as examples of good pub-
lic speaking. With proper care of interpretation and analysis,
consistent differences between these two groups may provide
insight into what sets outstanding speakers apart.

Some works have tried to directly study characteristics of
“good” speakers. Strangert [1] studies the prosody of an ex-
perienced news reporter and a politician in contrast to non-
professional speakers in similar contexts. In a later work,
Strangert and Gustafson [2] investigate the correlation between
various pitch-related features and subjective ratings of how
good a speaker is. They also manipulate the f0, fluency, and
speech rate of an audio sample to study the perceptual effect of
these variables, and they find that f0 variability has the strongest
effect. Since the concept of a “good” speaker is vaguely-
defined, however, much more work has been done on under-
standing the related concept of charisma in speech. Holladay
and Coombs [3] demonstrate the importance of vocal delivery
in shaping perceptions of leader charisma by exposing respon-
dents to a charismatic message in either a weak or strong de-
livery condition. Rosenberg and Hirschberg [4] [5] study how
lexical and acoustic information affect subjects’ perceptions of
charisma in politicians. Signorello et al. [6] likewise study the
perception of charisma in an Italian politician and try to iden-

tify latent factors associated with charisma. Several works have
studied the effect of culture on perceptions of charisma [7] [8]
[9] [10] [11], indicating that many aspects of charisma are com-
mon across cultures while some aspects are culture-specific.
Other works study how vocal characteristics influence percep-
tions of a speaker’s personality [12] or leadership effectiveness
[13]. A related concept to charisma is the likability of a speaker.
Prediction of likability was one of the tasks in the Interspeech
Speaker Trait Challenge [14], which spurred additional interest
on the topic.

Much of the work on charisma has revolved around polit-
ical speech, which means that the studies are based on a very
few number of speakers. This study shifts away from an em-
phasis on political speeches and instead considers general talks
on a wide range of topics given by a large number of speakers.
Additionally, this study does not try to explicitly predict or de-
fine any particular concept like charisma or likability (though
clearly these concepts are very relevant to being an engaging
speaker). Instead, it simply accepts that TED talks are examples
of great public speaking (as attested by their millions of views)
and simply asks the question, “What is it that great speakers do
that other speakers don’t?” We use professors as a contrast to
TED speakers.

To study the prosodic differences between TED speakers
and university professors, we introduce a binary classification
task that predicts whether or not a given audio sample is a TED
talk or a university lecture. It’s important to point out that the
classification task itself is not our ultimate goal – its purpose is
to help us understand the differences between these two groups.
The stronger the differences are, the better the classification will
be. These differences may be a result of many different factors
such as recording environment, speech format (50 minute lec-
ture vs 10 minute talk), speaker personality, and communica-
tion ability. Nonetheless, our hope is to study a large number of
speakers and to identify the most striking prosodic differences
between university lectures and TED talks. Thus, the classifica-
tion task is merely a means to an end. The end goal is to answer
the question, “What makes TED speakers stand out?”

The rest of the paper is organized as follows. Section 2 ex-
plains the experimental setup. Section 3 summarizes the results
of the classification task. Section 4 investigates which features
are most important and how the audio sample length affects pre-
diction accuracy. Section 5 interprets the meaning of the most
discriminative features. Section 6 concludes the work.

2. Experimental Setup
We will explain the experimental portion of our setup in 3 parts:
the data, the features, and the classifier.



2.1. Data

There are two main sources of data: university lectures and TED
talks.

The first set of data came from webcast.berkeley.
edu, a repository of webcast lectures available from the Uni-
versity of California Berkeley. We wanted a broad sample of as
many professors as possible, so we downloaded the first avail-
able lecture from 338 different courses. The first lecture is often
simply an overview of the course content, so it has the benefit
of being representative of the way the instructor speaks in pub-
lic. This is important for technical courses where lectures can
have a lot of writing equations on the board. The 338 courses
spanned 54 departments and were taught by 149 unique profes-
sors, 135 male and 14 female. Because there was relatively little
data from female speakers, we focus only on the male speakers
(313 lectures) in this study.

We prepared data samples from the lectures in the follow-
ing way. After normalizing the volume and downsampling to
16kHz mono, we extracted 10 5-minute audio segments ran-
domly selected from the duration of each lecture. Lectures
typically last approximately 50 or 80 minutes, and the design
choice of 10 5-minute samples is a tradeoff between having a
long segment to aggregate statistics, having a reasonable num-
ber of total data samples, avoiding oversampling, and creating
a balanced data set. From each 5-minute audio segment, we ex-
tract a fixed set of segment-level features. Each 5-minute audio
segment thus represents a single data point in our training or
testing set. So that our data samples represent the set of pro-
fessors equally, we randomly chose 10 5-minute samples from
each professor. With 135 professors and 10 samples per profes-
sor, there are a total of 1350 data points to be used for training
and testing.

The second set of data consists of TED talks downloaded
using the TED API. We first ordered the talks by the number of
total views, and then selected the 391 most popular talks given
by male speakers (this number was chosen to yield an approx-
imately balanced data set, as will be seen below). These talks
all had over a million views. As before, we normalize the vol-
ume and downsample to 16kHz mono. The talks typically range
between 10 and 20 minutes, so we randomly select 4 5-minute
audio segments from each talk. So that our data samples rep-
resent the 334 unique speakers equally, we randomly chose 4
5-minute samples from each speaker. With 334 speakers and 4
samples per speaker, there are a total of 1336 data points to be
used for training and testing.

Because of the limited amount of data, we ran all exper-
iments 10 times with random train-test splits on the speakers.
For each of the 10 repetitions, all professors and TED speak-
ers were thrown in a bag and 80% were randomly selected for
training. All the data samples from the selected training speak-
ers are used for training and the the data samples for the 20% of
remaining speakers is used for testing. The reported results are
averages across all 10 train-test splits.

2.2. Features

There are two principles that guided our selection of features.
The first principle is interpretability. Since our goal is to under-
stand the prosodic differences between the two groups of speak-
ers, we restrict our attention to features that are interpretable. In
this work, we only consider simple statistics of intuitive quan-
tities. The second principle is simplicity. In this preliminary
work, we aim for the lowest hanging fruit. There is no speech
activity detection. There is no phrase segmentation. All of the

features we considered are simple statistics based on pitch and
energy. We keep things as simple as possible.

We extracted 5 different families of features, each described
below. All features are derived from frame-level estimates of
pitch and energy, as estimated by the Snack toolkit [15]. The
numbers of features are shown in parentheses after their de-
scription. For convenience, we define the distribution statistics
of a collection to mean the average, standard deviation, quar-
tiles (i.e. the 0, 25, 50, 75, and 100% quantiles), full range, and
interquartile range.

f0 (100). The first family of features are various statistics
derived from frame-level pitch estimates. This includes the dis-
tribution statistics of f0 estimates (18, deciles instead of quar-
tiles), the fraction of frames that are voiced (1), and the inter-
segment distribution statistics of intra-segment f0 distribution
statistics (81). The latter refers to statistics computed on a seg-
ment level, where a group of contiguous voiced frames would
constitute a segment. So, for example, this includes the average
(across segment) f0 range within a segment and the standard
deviation of the maximum f0 within each segment. This family
of features describes the speaker’s use of pitch on both a frame
and segment level.

Segment length (19). The second family of features are
statistics of segment lengths, where segments are blocks of con-
tiguous frames that are all voiced or unvoiced. This includes
the distribution statistics on voiced segments (9), the distribu-
tion statistics on unvoiced segments (9), and the total number
of voiced segments (1). This family of features describes the
speaker’s continuity of speech and use of silence.

Voiced energy (198). The third family of features are statis-
tics derived from the frame-level energy of voiced frames. This
includes (a) the distribution statistics of energy for windows of
voiced frames (36) and (b) the inter-segment distribution statis-
tics of intra-segment energy distribution statistics (162). For
both (a) and (b) we consider the statistics of the rms energy over
various window lengths. For example, (a) includes the mean
rms energy in windows of 10 consecutive voiced frames and
the range of rms energy in windows of 50 consecutive voiced
frames. (b) includes statistics across segments, such as the av-
erage (across segments) of the maximum energy reached by any
50 frame window in a segment of voiced frames. We considered
windows of 1, 10, 20, and 50 frames for (a), and windows of 1
and 10 frames for (b). This family of features describes the
speaker’s use of volume on both a frame and segment level.

Unvoiced energy (216). This family is identical to the
voiced energy features, but applied to unvoiced frames. We
consider windows of 1, 10, 20, 50, 100, and 200 frames for
(a), and windows of 1 and 10 frames for (b). Unvoiced frames
can contain both unvoiced speech and silence, but these statis-
tics can still provide some indication of what is happening when
the speaker is not speaking.

Global energy (63). The fifth family of features are statis-
tics derived from the frame-level energy of all frames, irrespec-
tive of being voiced or unvoiced. This includes the distribution
statistics of energy for windows of 1, 10, 20, 50, 100, 200, and
500 frames (63). This family of features describes the overall
sound characteristics throughout the audio segment.

In total, we extracted 596 features from each audio seg-
ment.

2.3. Classifier

We used adaboost with tree stumps as our classifier [16]. For
each train-test split, we ran cross-validation experiments on the
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Figure 1: DET curves for the adaboost model with three differ-
ent features sets: pitch, energy, and all features combined.

training portion to select the number of trees. We will investi-
gate the performance of our adaboost models in the next section.

3. Results
In this section we describe the performance of our adaboost
models. Figure 1 shows the DET curves for the adaboost model
with 3 different sets of features: pitch-related features (f0 and
segment length), energy-related features (voiced, unvoiced, and
global energy), and all features combined. There are two things
we can notice about figure 1. First, energy features perform
much better than pitch features. In fact, there is little or no
benefit in adding pitch features to the energy features – we can
see that using all features is no better than using energy fea-
tures only. Second, all of the models perform much better than
random. Note that random guessing corresponds to 50% equal
error rate (EER). So, even though the pitch features perform
much worse than the energy features, they are still providing
useful information in discriminating between the two classes.

4. Analysis
In this section we investigate two questions of interest.

4.1. Feature Importance

The first question we would like to answer is, “Which features
are the most discriminative?” One way we can approach this
question is to compare the performance of models trained on
different subsets of features. Table 1 shows the EERs for the
adaboost model trained on various subsets of features, where
results are averaged over 10 random train-test splits. Again, we
see that energy features perform much better than pitch features,
but that all feature subsets show performance much better than
random. Interestingly, the unvoiced energy features showed the
best performance.

Another way we can approach this question is to look at
the relative influence of individual features. Relative influence
is the reduction in the loss function attributable to a single fea-
ture, normalized by the total reduction in loss due to all features
[17]. This measure indicates how much an individual feature
influences the adaboost prediction.

Feature EER std
Pitch - f0 30.5% 3.5%
Pitch - Segment Length 35.5% 4.4%
Pitch - All 27.6% 3.7%
Energy - Voiced 17.9% 3.2%
Energy - Unvoiced 9.8% 2.2%
Energy - Global 17.3% 3.5%
Energy - All 9.5% 1.7%
All Features 9.5% 2.5%

Table 1: EER of adaboost model with various feature subsets,
averaged over 10 random train-test splits.

Figure 2: Relative influence of all features in the adaboost
model, grouped by feature type and sorted in decreasing order
of influence.

Figure 2 shows the relative influence of all 596 features in
the full adaboost model, averaged over 10 random train-test
splits. The features have been grouped first by family, and
then sorted in decreasing order of relative influence within each
grouping. There are two things we can notice from this figure.
First, a few features dominate. We see that most features have
relative influence of approximately 0, and a few features make
up the bulk of relative influence. For example, the top 10, 84,
and 146 features constitute 66%, 90%, and 95% of the total rel-
ative influence, respectively. This suggests that we could sub-
stantially reduce the number of features without much degrada-
tion in classification performance. We will investigate the top
several features more closely in the next section. Second, a few
families dominate. The five families of features shown in figure
2 from top to bottom make up approximately 67%, 14%, 9%,
8%, and 2% of the total relative influence, respectively. In par-
ticular, the family of unvoiced energy features heavily affects
the adaboost predictions.

The answer to our first question is this: the most discrimi-
native features are energy statistics extracted from unvoiced re-
gions.



Figure 3: Effect of audio segment length on the EER of ad-
aboost models.

4.2. Segment Length

The second question we would like to answer is, “How does
audio segment length affect our results?” For all of the reported
results so far, we have used random 5 minute segments from
each speaker. We might wonder how well we can discriminate
based on shorter samples.

To answer this question, we repeated the original experi-
ments with a range of segment lengths. Figure 3 shows the EER
for adaboost models trained on audio segments of length 5, 10,
30, 60, 120, and 300 seconds. Each group of bars shows the
EER for 3 different feature combinations (pitch, energy, all) us-
ing a fixed audio segment length. Each bar represents the mean
EER across 10 random train-test splits, and the error bars show
one standard deviation above and below the mean.

There are 3 things to notice about the barplot in figure 3.
First, there are consistent and significant improvements as the
segment length increases from 5 seconds up to 5 minutes. We do
note, however, that the improvements are tapering off (note that
the indicated segment lengths do not increase linearly). Second,
these experiments all confirm our earlier findings: energy fea-
tures perform much better than pitch features, and show little or
no benefit from combination. This pattern is consistent across
all segment lengths. Third, we can do surprisingly well for very
short segment lengths. Note that for 5 second segment lengths,
we can still achieve about 25% EER. One natural question that
follows is whether it would be better to accumulate statistics
on one longer audio segment, or to combine the predictions of
many smaller adjacent audio segments. This is a question to
tackle in future work.

The answer to our second question is this: we can achieve
25% EER with 5 second segments and 10% EER with 5 minute
segments.

5. Discussion
In this section, we examine the some of the most influential fea-
tures in our adaboost model, and consider their interpretation.

Features 1, 2, and 4 (when ordered by influence) describe

the spread of the energy distribution in unvoiced regions, where
a higher spread is associated with TED talks. This suggests that
relatively more “stuff” is happening during unvoiced regions –
less of the unvoiced regions are spent in silence (which has low
variance) and more time is occupied with some type of acoustic
event such as unvoiced speech or audience laughter (which has
higher variance). The TED talks tend to be more “dense” in that
less time is spent in silence.

Feature 3 describes the 5 sec window within the audio seg-
ment which has the least energy, where more silence is associ-
ated with lectures. This suggests that TED talks are less likely
to have a 5 second window where nothing happens, whereas
this may be more common in lectures. Again, this indicates that
TED talks spend less time in silence and filler, and more time in
high-energy speech.

Feature 6 describes the single .2 second window within any
unvoiced region which has the least energy, where lower en-
ergy is associated with TED talks. Given how short the window
length is, this feature is probably capturing either the acoustic
environment or the quality of the audio recording equipment –
the silences in TED talks are more silent, either because the en-
vironment is more quiet or the recording equipment has a lower
noise floor. Feature 9 has a similar interpretation.

Feature 7 is the 10% quantile of f0 and can be thought of
as a conservative estimate of the speaker’s lower pitch range,
where deeper voices are associated with TED talks. It could be
that viewers prefer listening to deeper voices, that speakers with
deeper voices are more likely to be giving TED talks, or that the
TED speakers have had more training in how to speak in chest
(rather than head) voice.

Feature 8 describes the distribution spread of energy in 5
second windows, where less variability is associated with TED
talks. This suggests that TED speakers have a more consistent
delivery over longer windows of time, whereas the lectures tend
to have more varied chunks of silence and speech.

6. Conclusion
This paper examines prosodic differences between university
professors giving classroom lectures and speakers giving TED
talks. We train a classifier to predict whether a given audio seg-
ment is from a TED talk or a classroom lecture. The classi-
fier achieves < 10% EER with 5-minute audio segments, and
about 25% EER for 5-sec segments. By studying the relative
influence of features in the classifier, we can discern the most
striking prosodic differences: TED speakers give talks that are
more dense (i.e. less space and silence), speak with a deeper
voice, and have a more consistent flow of delivery (energy over
5 second windows). These differences may simply be a result
of the difference between a long lecture and a short talk. But
it is worthwhile to point out that fulfilling the above character-
istics is no easy task. A speaker who spends all of his time in
high-energy speech while maintaining a consistent delivery is
almost certainly a speaker who is very well prepared – he has
something to say and knows how to say it. Perhaps that is one
key part of what makes TED speakers stand out.
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