
MIDI PASSAGE RETRIEVAL USING CELL PHONE PICTURES OF SHEET
MUSIC

Daniel Yang Thitaree Tanprasert Teerapat Jenrungrot Mengyi Shan TJ Tsai
Harvey Mudd College, Claremont, CA USA

{dhyang, ttanprasert, mjenrungrot, mshan, ttsai}@hmc.edu

ABSTRACT

This paper investigates a cross-modal retrieval problem in
which a user would like to retrieve a passage of music from
a MIDI file by taking a cell phone picture of a physical
page of sheet music. While audio–sheet music retrieval
has been explored by a number of works, this scenario is
novel in that the query is a cell phone picture rather than
a digital scan. To solve this problem, we introduce a mid-
level feature representation called a bootleg score which
explicitly encodes the rules of Western musical notation.
We convert both the MIDI and the sheet music into boot-
leg scores using deterministic rules of music and classical
computer vision techniques for detecting simple geometric
shapes. Once the MIDI and cell phone image have been
converted into bootleg scores, we estimate the alignment
using dynamic programming. The most notable character-
istic of our system is that it does test-time adaptation and
has no trainable weights at all—only a set of about 30 hy-
perparameters. On a dataset containing 1000 cell phone
pictures taken of 100 scores of classical piano music, our
system achieves an F measure score of .869 and outper-
forms baseline systems based on commercial optical music
recognition software.

1. INTRODUCTION

Consider the following scenario: A person is practicing a
piece of music at the piano, and would like to know what a
particular passage of music sounds like. The person takes a
cell phone picture of a portion of the physical sheet music
in front of her, and is immediately able to hear what those
lines of music sound like.

In this paper, we explore the feasibility of such an ap-
plication where we assume that the piece is known and a
MIDI file of the piece is available. Our goal is to retrieve
a passage of music from a MIDI file using a cell phone
image as a query. This is a cross-modal retrieval scenario.

Several works have investigated the correspondence be-
tween audio and sheet music images. There are two gen-

c© Daniel Yang, Thitaree Tanprasert, Teerapat Jenrungrot,
Mengyi Shan, TJ Tsai. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Daniel Yang,
Thitaree Tanprasert, Teerapat Jenrungrot, Mengyi Shan, TJ Tsai. “MIDI
Passage Retrieval Using Cell Phone Pictures of Sheet Music”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

eral approaches to the problem. The first approach is to
use an existing optical music recognition (OMR) system
to convert the sheet music into a symbolic (MIDI-like)
representation, to compute chroma-like features, and then
to compare the resulting sequences to chroma features ex-
tracted from the audio. This approach has been applied to
synchronizing audio and sheet music [6,7,22,23,30], iden-
tifying audio recordings that correspond to a given sheet
music representation [18], and finding the audio segment
corresponding to a fragment of sheet music [17]. A differ-
ent approach has been explored in recent years: convolu-
tional neural networks (CNNs). This approach attempts to
learn a multimodal CNN that can embed a short segment of
sheet music and a short segment of audio into the same fea-
ture space, where similarity can be computed directly. This
approach has been explored in the context of online sheet
music score following [11], sheet music retrieval given an
audio query [12, 13, 15, 16], and offline alignment of sheet
music and audio [13]. Dorfer et al. [14] have also recently
shown promising results formulating the score following
problem as a reinforcement learning game. See [25] for a
recent overview of work in this area.

The key novelty in our scenario is the fact that the
queries are cell phone images. All of the works described
above assume that the sheet music is either a synthetically
rendered image or a digital scan of printed sheet music.
In recent years, a few works have begun to explore op-
tical music recognition (OMR) on camera-based musical
scores [3–5,32,33]. Here, we explore the use of cell phone
images of sheet music for retrieval. Cell phone images
provide a natural and convenient way to retrieve music-
related information, and this motivates our current study.

The main conceptual contribution of this paper is to in-
troduce a mid-level feature representation called a bootleg
score which explicitly encodes the conventions of Western
musical notation. As we will show, it is possible to con-
vert MIDI into a bootleg score using the rules of musical
notation, and to convert the cell phone image into a boot-
leg score using classical computer vision techniques for
detecting simple geometrical shapes. Once we have con-
verted the MIDI and cell phone image into bootleg feature
space, we can estimate the alignment using subsequence
DTW. The most notable characteristic of our system is
that it does test-time adaptation and contains no trainable
weights at all—only a set of approximately 30 hyperpa-
rameters. In the remainder of this paper, we will describe
the system and present our experimental results.



Figure 1. Block diagram of the proposed system.

2. SYSTEM DESCRIPTION

Our system takes two inputs: a cell phone picture of a page
of sheet music and a MIDI file of the corresponding piece.
The output of the system is a prediction of the time seg-
ment in the MIDI file that matches the lines of sheet music
shown in the cell phone picture. Note that in this problem
formulation, we assume that the piece is known, and that
we are trying to identify the matching passage of music in
the piece. In our study, we focus on piano music.

Our approach has three main components, which are
shown in Figure 1. The first two components convert the
MIDI and cell phone image into a representation which
we call a bootleg score. A bootleg score is a very low-
dimensional representation of music which is a hybrid be-
tween sheet music and MIDI. It is a manually designed
feature space that explicitly encodes the rules of West-
ern musical notation. The third component is to tempo-
rally align the two bootleg scores using subsequence DTW.
These three components will be discussed in the next three
subsections. 1

2.1 Generating MIDI Bootleg Score

Generating the MIDI bootleg score consists of the three
steps shown in Figure 2. The first step is to extract a list
of all individual note onsets. The second step is to cluster
the note onsets into groups of simultaneous note events.
After this second step, we have a list of note events, where
each note event consists of one or more simultaneous note
onsets. The third step is to project this list of note events
into the bootleg feature space.

The bootleg feature representation can be thought of as
a very crude version of sheet music (thus the name “boot-
leg score"). It asks the question, “If I were to look at the
sheet music corresponding to this MIDI file, where would
the notehead for each note onset appear among the staff
lines?" Note that there is ambiguity when mapping from a
MIDI note value to a position in a staff line system. For
example, a note onset with note value 60 (C4) could ap-
pear in the sheet music as a C natural or a B sharp, 2 and
it could also appear in the right hand staff (i.e. one ledger
line below a staff with treble clef) or the left hand staff (i.e.
one ledger line above a staff with bass clef). The bootleg
feature representation handles ambiguity by simply plac-

1 Our code is available at https://github.com/tjtsai/
SheetMidiRetrieval

2 It could also appear as a D double flat, but we do not consider double
sharps or double flats since they occur relatively infrequently.

Figure 2. Overview of generating the MIDI bootleg score
(Section 2.1). Below the block diagram, a short MIDI pas-
sage (left) and its corresponding bootleg score are shown.

ing a notehead at all possible locations. The bootleg score
is a binary image containing only these floating noteheads.

The bootleg score is a very low dimensional representa-
tion. Along the vertical dimension, it represents each staff
line location as a single bootleg pixel (which we will refer
to as a “bixel” to differentiate between high-dimensional
raw image pixels and low-dimensional bootleg score pix-
els). For example, two adjacent staff lines would span three
bixels: two bixels for the staff lines and one bixel for the
position in between. The bootleg score contains both right
hand and left hand staves, similar to printed piano sheet
music. In total, the bootleg score is 62 bixels tall. Along
the horizontal dimension, we represent each simultaneous
note event as a single bixel column. We found through
experimentation that a simple modification improves per-
formance in the alignment stage (Section 2.3): we sim-
ply repeat each bixel column twice and insert an empty
bixel column between each simultaneous note event. This
gives the system more flexibility to deal with noisy bixel
columns in the alignment stage.

The resulting MIDI bootleg score is a 62 × 3N binary
matrix, where N is the number of simultaneous note events
in the MIDI file. 3 Figure 2 shows an example bootleg
score. The staff lines are included as a visualization aid,
but are not present in the bootleg feature representation.

2.2 Generating Query Bootleg Score

The second main component of our system (Figure 1) is to
convert the cell phone image into a bootleg score represen-
tation. Unlike the MIDI representation, the image does not
explicitly encode any information about the notes, so we
will have to estimate this information from the raw image.

Our general approach rests on two key insights. The
first key insight is that we can identify where we are in the
piece if we can detect just three things: filled noteheads,
staff lines, and bar lines. Because these objects are sim-
ple geometrical shapes, classical computer vision tools are
sufficient to detect them (Section 2.2.2–2.2.4). The second
key insight is that we know a priori that these three objects
will occur many times in the image. This opens up the pos-
sibility of test-time adaptation, where we can use a very
simple notehead detector to identify some of the noteheads
in the image, and then use those detected instances to learn
a more accurate notehead template at test time. This is

3 The factor of 3 comes from the filler and repetitions.



Figure 3. Overview of generating the query bootleg score
(Sections 2.2.1–2.2.5). The cell phone image shown will
serve as a running example throughout the paper.

generally not possible with large object detection and clas-
sification scenarios like the ImageNet competition [10,28].

Our method for generating the cell phone image bootleg
score has five parts, which are shown in Figure 3. These
will be described in the next five subsections.

2.2.1 Image Pre-processing

The preprocessing consists of three operations: (1) con-
verting the image to grayscale, (2) resizing the image to
a maximum dimension of 1000 pixels while retaining the
same aspect ratio, and (3) removing background lighting
by blurring the image and then subtracting the blurred im-
age from the non-blurred image.

2.2.2 Notehead Detection

The goal of the notehead detection stage in Figure 3 is
to predict a bounding box around every filled notehead in
the cell phone image. Note that we do not attempt to de-
tect non-filled noteheads (i.e. half-notes, dotted half notes,
whole notes). The basic premise of our approach is that
filled noteheads are much easier to detect, and they also
generally occur much more frequently than half or whole
notes. The notehead detection consists of the steps shown
in Figure 4. We will explain these steps in the next four
paragraphs.

The first step is to perform erosion and dilation of the
pre-processed image with a circular morphological filter.
The erosion replaces each pixel with the whitest pixel in
a circular region centered around the pixel. This oper-
ation removes any objects that consist of thin lines, and
it only passes through contiguous dense regions of black
pixels. The dilation takes the resulting image and replaces
each pixel with the blackest pixel in a circular region cen-
ter around the pixel. This operation restores any objects
that survived the erosion back to their original size. Figure
4 shows an example of an image after erosion and dilation
(center image).

Next, we describe the processing in the upper path of
Figure 4. We take the eroded and dilated image and ap-
ply simple blob detection. We use the simple blob detector
in OpenCV with default parameter settings, except that we
specify a minimum and maximum area in order to spec-
ify the rough size of object we expect. We then take crops
of the (eroded and dilated) image around the detected key-
points, and we compute the average of the cropped regions.

Figure 4. Overview of notehead detection (Section 2.2.2).
The images at bottom show the pre-processed image before
(left) and after (center) erosion & dilation, and the detected
noteheads (right).

This average gives us an estimate of what a filled notehead
looks like in this image. Figure 4 shows an example of an
estimated template (upper right).

Now we describe the processing in the lower path of
Figure 4. We take the eroded and dilated image and bina-
rize it using Otsu binarization [26]. We then extract a list
of connected component regions from the binary image,
which gives us a list of candidate regions, some of which
are noteheads.

The last step in notehead detection is to filter the
list of candidates using our estimated notehead template.
We filter the list of candidates to only contain those re-
gions whose height, width, height-width ratio, and area all
roughly match the notehead template (within some toler-
ance). We also filter the list of candidates to identify chord
blocks, which often appear as a single connected compo-
nent region. When a chord block is identified, we estimate
the number of notes in the chord based on its area relative
to the notehead template and then perform k-means clus-
tering to estimate individual notehead locations.

At the end of these steps, we have a list of bounding
boxes around the detected notes in the cell phone image.
Figure 4 (bottom right) shows an example of the predicted
notehead locations in an image.

2.2.3 Staff Line Detection Features

The goal of the staff line detection features stage in Fig-
ure 3 is to compute a tensor of features that can be used to
predict staff line locations in the bootleg projection stage
(Section 2.2.5). In a cell phone picture, staff lines may not
be straight lines or have equal spacing throughout the im-
age due to the camera angle or camera lens distortions. For
these reasons, we estimate staff line locations locally rather
than globally. In other words, for every detected notehead,
we make a local estimate of the staff line location and spac-
ing in its vicinity.

The staff line detection features are computed in three
steps as shown in Figure 5. The first step is to perform
erosion and dilation on the image with a short (1 pixel
tall), fat morphological filter. This removes everything ex-
cept for horizontal lines. In practice, we find that there
are two types of objects that survive this operation: staff
lines and horizontal note beams (e.g. the beam connect-
ing a sequence of sixteenth notes). The second step is



Figure 5. Overview of staff line features computation
(Section 2.2.3). The images at bottom show the pre-
processed image before (left) and after (middle) erosion &
dilation, and the result after removing note beams (right).
The actual feature tensor is not shown.

to remove the note beams, as they can throw off the staff
line location estimates. Because the note beams are much
thicker than staff lines, we can isolate the note beams based
on their thickness and subtract them away from the im-
age. The third step is to convolve the resulting image with
a set of comb filters. We construct a set of tall, skinny
(1 pixel wide) comb filters, where each comb filter corre-
sponds to a particular staff line spacing. The set of comb
filters is selected to span a range of possible staff line
sizes. We then convolve the image (after beam removal)
with each of the comb filters and stack the filtered images
into a tensor. This feature tensor T global has dimension
Himage × Wimage × Ncomb, where Himage and Wimage

specify the dimensions of the image and Ncomb is the num-
ber of comb filters. Note that the third dimension corre-
sponds to different staff line spacings.

2.2.4 Bar Line Detection

The goal of the bar line detection stage (Figure 3) is to pre-
dict a bounding box around the barlines in the cell phone
image. The bar lines are needed to correctly cluster staff
lines into grand staff systems, where each grand staff con-
sists of a right hand staff and a left hand staff.

The bar line detection consists of the five steps shown
in Figure 6. The first step is to perform erosion and dila-
tion of the image with a tall, skinny morphological filter.
This filters out everything except vertical lines. In prac-
tice, we find that there are three types of objects that sur-
vive this operation: bar lines, note stems, and background
pixels (e.g. music stand at edges of image). The second
step is to binarize the eroded and dilated image using Otsu
binarization. The third step is to extract a list of connected
component regions from the binary image. The fourth step
is to filter this list of candidates to identify bar lines. This
can be done by first filtering out regions that are too wide
(e.g. background pixel regions), and then distinguishing
between note stems and bar lines by finding the thresh-
old on height that minimizes intra-class variance (which is
equivalent to Otsu binarization but applied to the heights).
The fifth step is to cluster the detected bar lines into lines
of music. We do this by simply clustering any bar lines
that have any vertical overlap. Figure 6 shows this process
for an example image.

Figure 6. Overview of bar line detection (Section 2.2.4).
The images at bottom show the pre-processed image before
(left) and after (center) erosion & dilation, and the detected
bar lines (right).

At the end of the bar line detection stage, we have a
prediction of the number of lines of music in the cell phone
image, along with the vertical pixel range associated with
each line. Figure 6 shows an example of an image at the
various stages of processing in the bar line detection.

2.2.5 Query Bootleg Projection

The last step in Figure 3 is to combine the notehead, staff
line, and bar line information in order to synthesize a boot-
leg score for the cell phone image. This bootleg score syn-
thesis consists of the three steps shown in Figure 7.

The first step is to locally estimate the staff line loca-
tion and spacing for each notehead. We do this by select-
ing a subset T local of the staff line feature tensor T global

which only contains a rectangular context region around
the notehead’s (x, y) location in the image. This gives
us a three-dimensional feature tensor T local with dimen-
sion Hcontext × Wcontext × Ncomb, where Hcontext and
Wcontext specify the size of the context region and Ncomb

specifies the number of comb filters. We calculate the sum
of features across the rows of T local, and then identify the
maximum element in the resulting Hcontext ×Ncomb ma-
trix. The location of the maximum element specifies the
vertical offset of the staff lines, along with the staff line
size. Figure 8 shows a visualization of the estimated local
staff line predictions for a line of music. Yellow dots cor-
respond to estimated notehead locations, and the red and
blue dots are predictions of the top and bottom staff lines.

The second step is to label and cluster detected note-
heads. We estimate each notehead’s discrete staff line lo-
cation by applying simple linear regression on its local
staff line coordinate system followed by quantization. This
is necessary to determine where the notehead should be
placed in the bootleg score. We also need to associate each
notehead with an upper or lower staff in a specific line of
music. To do this, we first check to see if the predicted
staff line system is within the vertical range of a valid line
of music (see Section 2.2.4) and, if so, if it falls in the up-
per or lower half of the region. If the predicted staff line
system does not fall within a valid line of music, the note-
head is ignored and will not appear in the bootleg score.
The latter tends to happen with noteheads at the very top
or bottom of the image, where a portion of a staff shows up
but is cut off by the image boundaries.

The third step is to actually place the noteheads into



Figure 7. Overview of query bootleg projection (Section
2.2.5). The image at bottom shows part of the generated
bootleg score for the cell phone image in Figure 3.

the bootleg score. We collapse the noteheads within each
valid bar line region into a sequence of simultaneous note
events, and then construct the bootleg score as a sequence
of simultaneous note events. Similar to the MIDI boot-
leg score, we repeat each simultaneous note event twice
and insert a filler column between each simultaneous note
event. Figure 7 shows part of the bootleg score generated
from the cell phone image in Figure 3.

2.3 Subsequence DTW

The third main component of our system (Figure 1) is to
align the two bootleg scores using subsequence dynamic
time warping (DTW). DTW is a well-established dynamic
programming technique for determining the alignment be-
tween two feature sequences. Subsequence DTW is a vari-
ant of DTW that finds the optimal match between a shorter
query segment and a subsequence of a (longer) reference
segment. For details on DTW and its variants, the reader
is referred to [24]. Our cost metric computes the negative
inner product between two bixel columns and then normal-
izes the result by the maximum of (a) the number of simul-
taneous noteheads in the sheet music and (b) the number
of simultaneous note onsets in the MIDI. The inner prod-
uct counts how many overlapping black bixels there are
between the two columns, and the normalization factor en-
sures that the actual cost is not biased by the number of
simultaneous notes. At the end of this stage, we have a pre-
diction of the segment in the MIDI file that best matches
the lines of sheet music shown in the cell phone image.
This is the final output of our proposed system.

3. EXPERIMENTAL SETUP

The experimental setup will be described in three parts: the
data, the annotations, and the evaluation metric.

The data was collected in the following manner. We first
download 100 piano scores in PDF format from IMSLP. 4

These piano scores come from 25 well-known composers
and span a range of eras and genres within the classical pi-
ano literature. To simplify the evaluation, we select scores
that do not have any repeats or structural jumps. For each
score, we then find a corresponding MIDI file from various
online websites. This gives us a total of 100 MIDI-PDF
matching pairs. Next, we printed out the PDF scores onto
physical paper, placed the sheet music pages in various

4 https://imslp.org

Figure 8. A visualization of local staff line estimation.
Each yellow dot corresponds to a detected notehead, and
the red and blue dots correspond to the predicted top and
bottom staff lines.

locations, and took 10 cell phone pictures of each score,
spaced throughout the length of the piece. The pictures
were taken in various ambient lighting conditions (some
of which triggered the flash and some of which didn’t),
various perspectives, and varying levels of zoom. The pic-
tures capture between 1 and 4 lines of music on a page. We
collected the data with two cell phones (iPhone 8, Galaxy
S10), and all pictures were taken in landscape orientation.
As much as possible, we tried to emulate typical conditions
of the application scenario. In total, the data contains 100
MIDI files, 100 scores, and 1000 cell phone images.

The data was manually annotated at the measure level.
For the MIDI files, we used pretty_midi to progra-
matically estimate the timestamps of the downbeats in each
measure, which were then manually verified and corrected.
For the cell phone images, we annotated which measures
in the score were captured. Since the images would often
capture a fragment of a line of music (at the top or bottom),
we adopted the convention of only annotating measures on
lines of music that are fully captured in the image. For
each image, we can use these annotations to determine the
matching time segment in the MIDI file.

The metric we use to evaluate our system performance
is precision, recall, and F measure. Precision is the tempo-
ral duration of overlap between the hypotheses and ground
truth segments divided by the total duration of hypothesis
segments. Recall is the amount of overlap divided by the
total duration of ground truth segments. F measure is then
computed as the harmonic mean of precision and recall. In
a few situations, the query perfectly matches two different
sections in the score. In these situations, we consider any
perfectly matching sections of the score to be correct.

4. RESULTS

We evaluate our system in the following manner. We first
randomly select 10 out of the 100 scores and set apart their
corresponding 10 × 10 = 100 cell phone images as the
training set. The remaining 900 cell phone images are set
apart for testing. Note that this train-test split has an un-
usually large emphasis on the test data. The reason that we
do this is because our system has no trainable weights—
only hyperparameters—so the training data is really only
used to determine the hyperparameter settings. After do-
ing iterative design on the training data and determining
reasonable hyperparameter settings, we froze the system
and evaluated it on the 900 test images coming from the 90
unseen music scores.



System Data P R F
Random Test .152 .189 .169
SharpEye Test .413 .091 .150
Photoscore Test .692 .681 .687
Bootleg Test .900 .840 .869

Bootleg Train .872 .869 .871

Table 1. Experimental results. The three rightmost
columns show precision (P), recall (R), and F measure (F).

We compare our system to three baselines. The first two
baseline systems are Photoscore and SharpEye, which are
both commercially available OMR software. We use the
software to convert the cell phone image to a (predicted)
MIDI representation and then perform subsequence DTW
with chroma features. Note that Photoscore and Sharp-
Eye were not designed to handle cell phone images, so
they would sometimes fail to process the image (i.e. would
throw an error). In these situations, we simply mapped er-
rors to a predicted time interval with 0 duration. The third
baseline is random (informed) guessing. We calculate the
average number (N ) of sheet music measures showing in
the training images. At test time we randomly select a time
interval in the reference MIDI file spanning N measures.

Table 1 shows the performance of our system and the
three baseline systems. There are three things to notice
about these results. First, the baseline systems all perform
poorly. This is not a surprise, since Photoscore and Sharp-
Eye were designed to handle sheet music scans, not cell
phone images. We would expect that other OMR-based
approaches that are trained on scanned sheet music would
likewise perform poorly on cell phone images. Second,
the bootleg approach far outperforms the baselines. The
proposed system achieves an F measure score of .869 on
the test set, which is far better than the highest F mea-
sure score (.687) among the baseline systems. Third, the
proposed system generalizes very well from the training
data to the testing data. After iterating and optimizing the
system on the training data, the F measure score only fell
from .871 (on the training data) to .869 (on the test data).
The reason that our system generalizes so well with such
a small training data set is that our system has no trainable
weights and only about 30 hyperparameters. Even then,
many of these hyper parameters are dictated by conven-
tions of Western musical notation for piano music. With
such a small number of parameters, we don’t expect the
system to suffer severely from overfitting, and indeed this
is what we observe in our experiments.

5. ANALYSIS

In this section we gain deeper insight into our system
through two different analyses.

The first analysis is to manually investigate all of the
test queries that were failures. Here, we define a failure as
having no overlap at all between the predicted time inter-
val and the ground truth time interval. These are instances
where the system simply failed to find a reasonable match.

There were two common causes of failure. The biggest
cause of failure came from notehead detection mistakes.
The notehead detector will obviously fail on half notes and
whole notes, since we only try to detect filled noteheads.
When the sheet music contains a high fraction of these
notes, the system will perform poorly. Also, the system
often failed to detect chord blocks where multiple note-
heads were located in close proximity to one another. This
problem is primarily due to poor hyperparameter settings,
and could be mitigated by optimizing the hyperparameters
over a larger, more diverse training data set. The second
cause of failure were symbols that cause the noteheads to
appear in a different place than expected. These include
clef changes, octave markings, and trills. Clef changes
and octave markings could be incorporated into the MIDI
bootleg score by considering all possible clef and octave
changes in both right and left hand staves, but there is no
immediately obvious way to address the problem of trills.

The second analysis is to characterize run time. Be-
cause our application is an online search, the run time is an
important consideration. Accordingly, we profiled our sys-
tem to determine how long it takes to process each query,
and to identify the parts of the system that are bottlenecks
to improve runtime. Note that our entire system is im-
plemented in python with OpenCV and a custom cython-
accelerated subsequence DTW function. When each query
is processed by a single 2.1 GHz Intel Xeon processor,
the average runtime is 7.6 seconds. When we analyze the
breakdown of runtime across the major components of the
system, we find that the major bottleneck is the staff line
detection features stage (92% of total runtime), which pri-
marily consists of 2-D convolutions with the set of comb
filters. This suggests one way to improve runtime: rather
than using a large set of comb filters to handle a wide range
of possible staff line spacings, we could explicitly estimate
the staff line size and consider a much smaller set of comb
filters. If we could reduce the set of comb filters by a factor
of 10, the average time per query would be 1.3 seconds.

6. CONCLUSION

We explore an application in which a user would like to re-
trieve a passage of music from a MIDI file by taking a cell
phone picture of a physical page of printed sheet music.
We develop a proof-of-concept prototype and evaluate its
performance on a dataset containing 1000 cell phone pic-
tures of 100 different scores of classical piano music. Our
system projects both the MIDI file and the cell phone im-
ages into a low-dimensional feature representation called a
bootleg score, which explicitly encodes the rules of West-
ern musical notation. We then align the two bootleg scores
using subsequence DTW. The most notable characteristic
of our system is that it has no trainable weights at all—only
a small set of hyperparameters that can be easily tuned on a
small training set. Our system generalizes very well from
training to testing, and it achieves a test F measure score
of .869. We hope that this work serves as an entry point
to exploring new ways to retrieve various forms of music
using cell phone images as a query.



7. ACKNOWLEDGMENTS

We would like to thank the Class of 1989 Summer Expe-
riential Learning Fund, the Vandiver Summer Experiential
Learning Fund, and the Norman F. Sprague III, M.D. Ex-
periential Learning Fund established by the Jean Perkins
Foundation for their generous support.

8. REFERENCES

[1] Andreas Arzt, Sebastian Böck, and Gerhard Widmer.
Fast identification of piece and score position via sym-
bolic fingerprinting. In Proc. of the International Con-
ference on Music Information Retrieval (ISMIR), pages
433–438, 2012.

[2] Andreas Arzt, Gerhard Widmer, and Reinhard
Sonnleitner. Tempo- and transposition-invariant iden-
tification of piece and score position. In Proc. of the
International Conference on Music Information Re-
trieval (ISMIR), pages 549–554. Citeseer, 2014.

[3] Adrià Rico Blanes and Alicia Fornés Bisquerra.
Camera-based optical music recognition using a con-
volutional neural network. In IAPR International Con-
ference on Document Analysis and Recognition (IC-
DAR), volume 2, pages 27–28. IEEE, 2017.

[4] Hoang-Nam Bui, In-Seop Na, and Soo-Hyung Kim.
Staff line removal using line adjacency graph and staff
line skeleton for camera-based printed music scores.
In International Conference on Pattern Recognition,
pages 2787–2789. IEEE, 2014.

[5] Jorge Calvo-Zaragoza and David Rizo. Camera-
primus: Neural end-to-end optical music recognition
on realistic monophonic scores. In Proc. of the Inter-
national Conference on Music Information Retrieval
(ISMIR, pages 23–27, 2018.

[6] David Damm, Christian Fremerey, Frank Kurth,
Meinard Müller, and Michael Clausen. Multimodal
presentation and browsing of music. In Proc. of the
International Conference on Multimodal Interfaces
(ICMI), pages 205–208, Chania, Crete, Greece, Octo-
ber 2008.

[7] David Damm, Christian Fremerey, Verena Thomas,
Michael Clausen, Frank Kurth, and Meinard Müller.
A digital library framework for heterogeneous music
collections: From document acquisition to cross-modal
interaction. International Journal on Digital Libraries,
12(2-3):53–71, 2012.

[8] Roger B. Dannenberg and Ning Hu. Polyphonic au-
dio matching for score following and intelligent audio
editors. In Proc. of the International Computer Mu-
sic Conference (ICMC), pages 27–34, San Francisco,
USA, 2003.

[9] Roger B Dannenberg and Christopher Raphael. Music
score alignment and computer accompaniment. Com-
munications of the ACM, 49(8):38–43, 2006.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. IEEE,
2009.

[11] Matthias Dorfer, Andreas Arzt, Sebastian Böck,
Amaury Durand, and Gerhard Widmer. Live score fol-
lowing on sheet music images. In Late Breaking Demo
at the International Conference on Music Information
Retrieval (ISMIR), 2016.

[12] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer.
Towards score following in sheet music images. In
Proc. of the International Conference on Music Infor-
mation Retrieval (ISMIR), pages 789–795, New York
City, New York, USA, 2016.

[13] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer.
Learning audio-sheet music correspondences for score
identification and offline alignment. In Proc. of the
International Conference on Music Information Re-
trieval (ISMIR), pages 115–122, Suzhou, China, 2017.

[14] Matthias Dorfer, Florian Henkel, and Gerhard Widmer.
Learning to listen, read, and follow: Score following as
a reinforcement learning game. In Proc. of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 784–791, 2018.

[15] Matthias Dorfer, Jan Hajič Jr., Andreas Arzt, Harald
Frostel, and Gerhard Widmer. Learning audio-sheet
music correspondences for cross-modal retrieval and
piece identification. Transactions of the International
Society for Music Information Retrieval, 1(1):22–33,
2018.

[16] Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Ko-
rzeniowski, and Gerhard Widmer. End-to-end cross-
modality retrieval with cca projections and pairwise
ranking loss. International Journal of Multimedia In-
formation Retrieval, 7(2):117–128, 2018.

[17] Christian Fremerey, Michael Clausen, Sebastian Ew-
ert, and Meinard Müller. Sheet music-audio identifica-
tion. In Proc. of the International Conference on Music
Information Retrieval (ISMIR), pages 645–650, Kobe,
Japan, October 2009.

[18] Christian Fremerey, Meinard Müller, Frank Kurth, and
Michael Clausen. Automatic mapping of scanned sheet
music to audio recordings. In Proc. of the International
Conference on Music Information Retrieval (ISMIR),
pages 413–418, Philadelphia, USA, September 2008.

[19] Ross Girshick. Fast R-CNN. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), pages 1440–1448, 2015.

[20] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam
Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev



Oore, and Douglas Eck. Onsets and frames: Dual-
objective piano transcription. In Proc. of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 50–57, 2018.

[21] Ning Hu, Roger B. Dannenberg, and George Tzane-
takis. Polyphonic audio matching and alignment for
music retrieval. In Proc. of the IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, 2003.

[22] Özgür İzmirli and Gyanendra Sharma. Bridging
printed music and audio through alignment using a
mid-level score representation. In Proc. of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR, pages 61–66, 2012.

[23] Frank Kurth, Meinard Müller, Christian Fremerey,
Yoon-Ha Chang, and Michael Clausen. Automated
synchronization of scanned sheet music with audio
recordings. In Proc. of the International Conference on
Music Information Retrieval (ISMIR), pages 261–266,
Vienna, Austria, September 2007.

[24] Meinard Müller. Fundamentals of Music Processing:
Audio, Analysis, Algorithms, Applications. Springer,
2015.

[25] Meinard Müller, Andreas Arzt, Stefan Balke, Matthias
Dorfer, and Gerhard Widmer. Cross-modal music re-
trieval and applications: An overview of key method-
ologies. IEEE Signal Processing Magazine, 36(1):52–
62, 2019.

[26] Nobuyuki Otsu. A threshold selection method from
gray-level histograms. IEEE Trans. on Systems, Man,
and Cybernetics, 9(1):62–66, 1979.

[27] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 779–788, 2016.

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–
252, 2015.

[29] Siddharth Sigtia, Emmanouil Benetos, and Simon
Dixon. An end-to-end neural network for polyphonic
piano music transcription. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 24(5):927–
939, 2016.

[30] Verena Thomas, Christian Fremerey, Meinard Müller,
and Michael Clausen. Linking sheet music and au-
dio – challenges and new approaches. In Meinard
Müller, Masataka Goto, and Markus Schedl, editors,
Multimodal Music Processing, volume 3 of Dagstuhl

Follow-Ups, pages 1–22. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2012.

[31] Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber,
and Thilo Stadelmann. Deep watershed detector for
music object recognition. In Proc. of the International
Conference on Music Information Retrieval (ISMIR),
pages 271–278, 2018.

[32] Quang Nhat Vo, Soo Hyung Kim, Hyung Jeong Yang,
and Gueesang Lee. An mrf model for binarization
of music scores with complex background. Pattern
Recognition Letters, 69:88–95, 2016.

[33] Quang Nhat Vo, Tam Nguyen, Soo-Hyung Kim,
Hyung-Jeong Yang, and Guee-Sang Lee. Distorted mu-
sic score recognition without staffline removal. In In-
ternational Conference on Pattern Recognition, pages
2956–2960. IEEE, 2014.


