
MAKE YOUR OWN ACCOMPANIMENT: ADAPTING FULL-MIX
RECORDINGS TO MATCH SOLO-ONLY USER RECORDINGS

TJ Tsai
Harvey Mudd College

Steve Tjoa
Violin.io

Meinard Müller
International Audio Laboratories Erlangen

ABSTRACT

We explore the task of generating an accompaniment track
for a musician playing the solo part of a known piece. Un-
like previous work in real-time accompaniment, we focus
on generating the accompaniment track in an offline fash-
ion by adapting a full-mix recording (e.g. a professional
CD recording or Youtube video) to match the user’s tempo
preferences. The input to the system is a set of recorded
passages of a solo part played by the user (e.g. solo part
in a violin concerto). These recordings are contiguous seg-
ments of music where the soloist part is active. Based on
this input, the system identifies the corresponding passages
within a full-mix recording of the same piece (i.e. contains
both solo and accompaniment parts), and these passages
are temporally warped to run synchronously to the solo-
only recordings. The warped passages can serve as accom-
paniment tracks for the user to play along with at a tempo
that matches his or her ability or desired interpretation. As
the main technical contribution, we introduce a segmen-
tal dynamic time warping algorithm that simultaneously
solves both the passage identification and alignment prob-
lems. We demonstrate the effectiveness of the proposed
system on a pilot data set for classical violin.

1. INTRODUCTION

Ima Amateur loves her recording of Itzhak Perlman per-
forming the Tchaikovsky violin concerto with the Lon-
don Symphony Orchestra. She has been learning how to
play the first movement herself, and she would love to play
along with the recording. Unfortunately, there are parts of
the recording that are simply too fast for her to play along
with. She finds an app that can slow down the parts of the
Perlman recording that are difficult. All she has to do is up-
load several solo recordings of herself performing sections
of the concerto, along with the original full-mix recording
that she would like to play along with. The app analyzes
her playing and generates a modified version of the Perl-
man recording that runs in sync with her solo recordings.

This paper explores the technical feasibility of such an
application. In technical terms, the problem is this: given a

c© TJ Tsai, Steve Tjoa, Meinard Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: TJ Tsai, Steve Tjoa, Meinard Müller. “Make Your Own
Accompaniment: Adapting full-mix recordings to match solo-only user
recordings”, 18th International Society for Music Information Retrieval
Conference, Suzhou, China, 2017.

full-mix recording and an ordered set of solo-only record-
ings that each contain a contiguous segment of music
where the soloist is active, design a system that can time-
scale modify the full-mix recording to run synchronously
with the solo recordings. 1

There are three main technical challenges underlying
this scenario. The first challenge is to identify the passages
in the full-mix recording that correspond to the solo-only
recordings. The second challenge is to temporally align
the corresponding passages in the full-mix and solo record-
ings. The third challenge is to time-scale modify the full-
mix recording to follow the calculated alignment without
changing the pitch of the original recording. This paper fo-
cuses primarily on the first two challenges, and it assesses
the technical feasibility of solving these problems on a pi-
lot data set. The main technical contribution of this work
is to propose a segmental dynamic time warping (DTW)
algorithm that simultaneously solves the passage identifi-
cation and temporal alignment problems. We will simply
adopt an out-of-the-box approach to solve the third chal-
lenge.

The idea of generating accompaniment for amateur mu-
sicians has been explored in two different directions. On
one end of the spectrum, companies have explored fixed
accompaniment tracks. Some examples include the popu-
lar Aebersold Play-A-Long recordings for jazz improvisa-
tion and Music Minus One for classical music. The ben-
efit of fixed accompaniment tracks is their simplicity – all
you need is a device that can play audio. The drawback
of fixed accompaniment tracks is their lack of adaptivity
– they do not respond or adapt to the user’s playing in
any way. On the other end of the spectrum, academics
have explored real-time accompaniment (e.g. see work by
Raphael [23] [24] and Cont [3]). These are complex sys-
tems that can track a musician’s (or group’s) playing and
generate accompaniment in real-time. The benefit of real-
time accompaniment is the adaptivity of the system. The
drawbacks of real-time accompaniment systems are that
they are not easy to use for the general population (e.g. re-
quire software packages on a laptop) and may not be very
expressive (e.g. sound like MIDI). Also, for the purposes
of academic study, another drawback is the difficulty of
evaluating such a system in an objective way. Because the
user and the accompaniment system influence each other in
real-time, it is difficult to decouple the effect of one from
the other. When there are errors, for example, it is diffi-
cult to say whether the error is because the accompaniment

1 Without changing the pitch, of course!



system failed, the user failed to respond appropriately, or
some combination of both.

This work explores the realm in between these two ex-
tremes. Like fixed accompaniment tracks, the proposed
system has the benefit of simplicity – the user does not
need any specialized software or hardware, but simply re-
ceives an audio track that can be played on any audio de-
vice. Like real-time accompaniment, the proposed system
has the benefit of (partial) adaptivity – the system tailors
the accompaniment track to the user’s playing in an of-
fline manner. This middle realm has several additional
benefits. Because the user and the accompaniment are no
longer coupled in real-time, we can measure how well the
accompaniment system “follows” the user’s playing with
objective metrics. Another benefit is that the offline nature
of this system makes it suitable for a client-server model,
which is ideal for the envisioned app. Lastly, by approach-
ing this problem through adapting an existing recording,
we can also potentially get the benefit of a very musical
and expressive accompaniment track (assuming we don’t
introduce too many artifacts from time-scale modification).

The two challenges we will focus on – passage identifi-
cation and temporal alignment – are closely related to pre-
vious work in audio matching and music synchronization.
The passage identification problem has strong similarities
to audio matching, where the goal is to identify a given
passage in other performances of the same (usually clas-
sical) work. Previous work has introduced robust features
for this task [20] and efficient ways to handle global tempo
variations such as using multiple versions of a query that
have been tempo-adjusted [19]. Subsequent work has ex-
plored the use of indexing techniques to scale the system to
large data sets [14] [2]. The temporal alignment problem
has strong similarities to music synchronization, where the
goal is to temporally align two performances of the same
piece. The bread-and-butter approach is to apply DTW
with suitably designed features [12] [4] [10]. One problem
with this approach is that the memory and computation re-
quirements increase quadratically as the feature sequences
increase in length. Many variants have been proposed to
mitigate this issue, including limiting the search space to
a band [25] or parallelogram [13] around the cost matrix
diagonal, doing the time-warping in an online fashion [5]
[15], or adopting a multiscale approach that estimates the
alignment at different granularities [26] [21] [9]. Other
variants tackle issues like handling repeats [11], identify-
ing partial alignments between recordings [17] [18], deal-
ing with memory constraints [22], and taking advantage of
multiple recordings [27] [1].

Though similar, the proposed scenario differs from
most previous work in three important ways. First, we are
matching solo-only recordings to full-mix recordings (i.e.
solo and accompaniment). Most work in audio matching
and music synchronization assumes that the recordings of
interest are different performances of the same piece, and
therefore have the same audio sources. One could think
of the current scenario as audio matching with very high
levels of additive noise (i.e. the accompaniment). Sec-

Figure 1. A graphical overview of the segmental DTW
algorithm for aligning an ordered set of solo record-
ings against a full-mix recording. Rows correspond to
solo recording frames and columns correspond to full-mix
recording frames. Time increases from bottom to top and
left to right. In this example, N = 4.

ond, the task is offline but there are still stringent runtime
constraints. In music synchronization, the best approach
is the one with the highest alignment precision, and we
are willing to accept significant runtimes since the task
is offline. In the current scenario, however, the runtime
is a very important factor because the application is user-
facing. A user will not be willing to wait 30 seconds for
the accompaniment track to be generated. For this rea-
son, in this paper we will not consider any approaches to
these two challenges that require more than 5-6 seconds of
runtime. Third, the current scenario deals with consumer-
produced recordings. Much previous work focuses on al-
bum tracks from professional CDs and professional mu-
sicians. In contrast to this, amateur musicians will play
wrong notes, count incorrectly, rush, and play out of tune.
These issues will be important factors affecting system per-
formance.

This paper is structured around our main goal: to as-
sess the technical feasibility of solving the passage identi-
fication and temporal alignment problems in a robust and
efficient manner. Section 2 describes our system, includ-
ing an explanation of the proposed segmental DTW algo-
rithm. Section 3 discusses the experimental setup. Section
4 presents empirical results of our experiments on the pilot
data set. Section 5 investigates several questions of interest
to gain more intuition into system performance. Section 6
concludes the work.

2. SYSTEM DESCRIPTION

We describe the proposed system in three parts: the seg-
mental DTW algorithm, the features, and the time-scale
modification.

2.1 Segmental DTW Algorithm

There are four main steps in the segmental DTW algo-
rithm, each explained below.

Step 1: Frame-level cost matrices. The first step is



to compute a subsequence DTW cumulative cost matrix
for each solo segment. Subsequence DTW is a variant of
the regular DTW algorithm in which one of the record-
ings (the query) is assumed to only match a section of the
other recording (the reference), rather than matching the
entire recording from beginning to end. This can be ac-
complished by allowing the query to begin matching any-
where in the reference without penalty, and allowing the
query to end matching anywhere in the reference with-
out penalty. We allow the following (query, reference)
steps in the dynamic programming stage: (1, 1), (1, 2), and
(2, 1). These steps have weights of 1, 1, and 2, respec-
tively. 2 This set of steps assumes that the instantaneous
tempo in the query and reference will differ at most by a
factor of 2. For more details about subsequence DTW, see
chapter 7 in [16]. In the case of our proposed algorithm, we
compute the subsequence DTW cumulative cost matrix but
refrain from backtracing until step 4. Rather than backtrac-
ing from the local optimum in each cumulative cost matrix,
we will instead backtrace from the element on the globally
optimum path. This globally optimum path will be deter-
mined in steps 2 and 3.

Step 2: Segment-level cost matrix. The second step is
to compute a cumulative cost matrix of global path scores
across all solo segments. This can be done in two sub-
steps. The first sub-step is to create a matrix that con-
tains the last row of each subsequence cumulative cost ma-
trix from step 1. 3 This matrix will have N rows and K
columns, where N is the number of solo segments and K
is the number of frames in the reference (i.e. full-mix)
recording. Note that this matrix is analogous to a pairwise
cost matrix, where instead of pairwise frame-level costs
we have segment-level subsequence path costs. The sec-
ond sub-step is to compute a (segment-level) cumulative
cost matrix on this (segment-level) pairwise cost matrix by
doing dynamic programming. This dynamic programming
step differs from regular DTW dynamic programming in
one important way. Unlike most scenarios where the set
of possible transitions is fixed regardless of position in the
cost matrix, here the possible transition steps changes from
row to row. Specifically, for an element in row n, the two
possible transitions are (0, 1) and (1, Ln+1

2 ), where Ln+1

is the length (in frames) of the (n + 1)th solo segment.
The weights on these two transitions are 0 and 1, respec-
tively. In words, we are looking for the N elements in the
segment-level pairwise cost matrix (one per row) that have
the minimum total path score under two constraints: (1)
they are consistent with the given ordering (i.e. segment n
comes before segment n+1), and (2) elements in adjacent
rows must be separated by a minimum distance, which is
determined by the length of the solo segment and the max-
imum tempo difference in the subsequence DTW step (in
this case, a factor of 2).

Step 3: Segment-level backtrace. The third step is to
backtrace through the segment-level cumulative cost ma-

2 Note that the (2, 1) step should be weighted double to prevent de-
generate matchings to very short sections.

3 Here, we assume that rows correspond to different query frames, and
columns correspond to different reference frames.

trix. We start at the last element of the matrix (i.e. the
upper right hand corner) and backtrace until we reach the
first element of the matrix (i.e. the lower left hand corner).
Note that the (0, 1) steps with 0 weight allow for skipping
portions of the full-mix recording without penalty. The
(1, Ln+1

2 ) transitions in the backtraced path indicate the el-
ement in each row that contributes to the globally optimal
path.

Step 4: Frame-level backtrace. The final step is to
backtrace through each subsequence DTW cumulative cost
matrix from step 1, where we begin the backtracing at the
elements selected in step 3. These elements have been
selected to optimize a global path score across all solo
segments, rather than a local path score across a single
solo segment. After performing this frame-level backtrace
step, we have achieved our desired goal: identifying both
segment-level and frame-level alignments for each solo
segment.

Figure 1 shows a graphical summary of the segmental
DTW algorithm. In this figure, rows correspond to differ-
ent solo segment frames and columns correspond to dif-
ferent full-mix frames. Time increases from bottom to top
and from left to right. The four rectangles in the lower left
are the frame-level cumulative cost matrices for each solo
recording. The segment-level cost matrix (top left) is con-
structed by aggregating the last row from each frame-level
cumulative cost matrix (highlighted in dark gray). We then
backtrace at the segment level, and use the predicted seg-
ment ending points to backtrace at the frame level. The
final predicted alignments are shown in the lower right.
Note that the proposed system only indicates how the full-
mix recording should be warped during the segments of the
piece when the soloist is playing. One could interpolate the
tempo for the other segments.

2.2 Features

The segmental DTW algorithm is compatible with any
frame-based feature and cost metric. For the experiments
in this paper, we computed L2-normalized chroma features
every 22 ms and used a cosine distance metric. This com-
bination was selected for two practical reasons. First, we
wanted to demonstrate the segmental DTW algorithm with
a standard feature, so as not to conflate the performance
benefits of both a new matching algorithm and a novel (or
less widely used) feature. Second, this combination al-
lows the subsequence DTW cost matrices to be computed
very efficiently with simple matrix multiplication. Given
the constraints on runtime of this consumer-facing applica-
tion, efficiency is an important consideration. We selected
the feature rate to ensure that the average time required to
align a single query (i.e. multiple solo recordings against
a full-mix recording) was under 6 seconds. This thresh-
old could be set arbitrarily depending on how long we are
willing to make the user wait. In the discussion section,
we will compare our main results with a system that uses
more state-of-the-art features, which were developed in an
offline context where runtime is not a significant consider-
ation. These latter features can provide a lower bound on



Composition full solo avgLen segs
Seitz concerto no2, mv3 5 5 187s 5
Bach double concerto, mv1 5 5 250s 5
Vivaldi concerto in a, mv1 5 5 229s 5
Veracini sonata in d, mv4 3 4 223s 4

Table 1. Summary of the pilot data set. Each row indicates
the number of full-mix and solo recordings, the average
length, and the number of segments in the composition.

error rate when we ignore runtime constraints.

2.3 Time-scale modification

The goal of the time-scale modification (TSM) step is to
stretch or compress the duration of a given audio signal
while preserving properties like pitch and timbre. Typi-
cally, TSM approaches stretch or compress an audio signal
in a linear fashion by a constant stretching factor. In our
scenario, we need to stretch the full-mix recording accord-
ing to the solo-mix alignment, which leads to a non-linear
time-stretch function. To deal with non-linear stretches,
we apply the strategy described in [8], where the positions
of the TSM analysis frames are specified according to the
time-stretch function instead of a constant analysis hop-
size.

To attenuate artifacts and to improve the quality of
the time-scale modified signal, we use a recent TSM ap-
proach [7] that involves harmonic-percussive separation
and combines the advantages of a phase-vocoder TSM
approach (preserving the perceptual quality of harmonic
signal components) and a time-domain TSM approach
(preserving transient-like percussive signal components).
An overview of different TSM procedures can be found
in [6, 8].

3. EXPERIMENTAL SETUP

The experimental setup will be described in three parts:
the data collection, the data preparation, and the evaluation
metric.

3.1 Data Collection

Our data collection process was dictated by practicality. In
order to evaluate the proposed system, we need two dif-
ferent types of audio data: full-mix recordings and solo
recordings. Clearly, the full-mix recordings are in abun-
dant supply and can be selected from any professional CD
recording or Youtube video. The solo recordings, how-
ever, are much more difficult to find, as musicians typically
do not record performances that are missing the accompa-
niment part. Our solution to this problem was to focus
data collection efforts on a small subset of pieces from the
highly popular Suzuki violin method. The Suzuki method
prescribes a specific sequence of violin works in order to
develop a violinist’s mastery of the instrument. Because
of the popularity of the Suzuki method, we were able to
find Youtube videos of violinists performing the solo parts

(in isolation) from several works. Some of these record-
ings are violin teachers demonstrating how to perform a
piece. Some recordings are young adults wishing to doc-
ument their progress on the violin. Other recordings are
doting parents trying to show off their talented children.

Table 1 shows a summary of the audio recordings. The
data set contains four violin pieces or movements selected
from Suzuki books five and six. For each piece, we col-
lected multiple full-mix recordings and solo recordings
from Youtube. By focusing on annotating multiple record-
ings of the same piece, we can make the most of the limited
amount of (annotated) data by considering different combi-
nations of full-mix and solo recordings. At the same time,
we wanted several pieces of music from different com-
posers and periods, so as to avoid a composer-specific bias.
The recordings range in length from 161 to 325 seconds,
and they range in quality from cell phone videos to pro-
fessionally recorded performances. All audio tracks were
converted to mono wav format with 22050 Hz sampling
rate. In total, there is approximately 2 hours and 20 min-
utes of annotated audio data.

3.2 Data Preparation

Once the audio data was collected, there were two addi-
tional steps needed to prepare the data for use in our exper-
iments.

The first preparation step was to generate beat-level an-
notations. The annotations were done in SonicVisualizer 4

by three different individuals with extensive training in
classical piano. We kept only those beats that had two or
more independent annotations, and we use the mean anno-
tated time as the ground truth.

The second data preparation step was to divide the solo
recordings into segments. Recall that the input to the sys-
tem is a set of contiguous segments of music where the
soloist is active. Each segment is specified by a pair of
unique identifiers (e.g. start at measure 5 beat 1 and end at
measure 37 beat 4), and the segments are non-overlapping.
For each composition, we manually selected segments by
identifying natural breakpoints where a violinist would
likely end a segment, such as section boundaries or the
start/end of a long rest.

We can summarize the prepared data set as follows.
Each query in the benchmark is a pairing of a full-mix
recording and a solo recording (i.e. the 4-5 segments from
a solo recording). There are thus a total of 87 queries in
the benchmark. This is clearly not a large data set. It is
meant to serve as a pilot data set to assess the feasibility of
the proposed system.

3.3 Evaluation Metric

In this paper, we will focus only on the aspects of the
system that can be evaluated objectively: the segment
boundaries and frame-level alignments. To evaluate seg-
ment boundary predictions, we compare the predicted and
ground truth boundary points for each solo segment, and

4 http://www.sonicvisualiser.org/



tolerance global subseq segmental
1s 40.2% 8.4% 2.2%
2s 20.2% 6.1% 0.0%
5s 14.9% 6.1% 0.0%
10s 9.3% 6.1% 0.0%

Table 2. Boundary prediction error rates for global, subse-
quence, and segmental DTW algorithms. Each entry indi-
cates the percentage of predicted boundary points that are
incorrect at a specified allowable error tolerance.

then determine what fraction of predicted boundary points
are correct (or incorrect) for a given allowable error toler-
ance. To evaluate frame-level alignments, we compare pre-
dicted and ground truth timestamps in the full-mix record-
ing that correspond to the annotated beat locations in the
solo segments. 5 We then determine what fraction of align-
ments are correct (or incorrect) for a given allowable error
tolerance. By considering a range of different error toler-
ances, we can determine an error tolerance curve. Note that
the error tolerances for the segment boundary metric are
much larger than the error tolerances for frame alignment,
since the former is measuring retrieval at the segment level.

4. RESULTS

To assess the effectiveness of the proposed segmental
DTW algorithm, we compared its performance against two
other baseline systems. The first baseline system is to sim-
ply concatenate all of the solo audio segments and perform
a single global DTW against the full-mix recording. For
this baseline system, we use transition steps (0, 1), (1, 0),
and (1, 1) in order to handle the discontinuities between
solo segments. All steps are given equal weight. The sec-
ond baseline system is to perform subsequence DTW on
each solo segment independently, where the best locally
optimal path in each cost matrix is taken as the predicted
segment-level and frame-level alignment. In order to make
the comparison between systems fair, all three systems use
the same chroma features. Any differences in performance
should thus reflect the effectiveness of the matching algo-
rithm.

Table 2 compares the performance of the three systems
on passage identification. The rows in the table show the
percentage of predicted boundary points that are incor-
rect at four different error tolerances. The three rightmost
columns compare the performance of the global DTW
baseline (‘global’), the subsequence DTW baseline (‘sub-
seq’), and the proposed segmental DTW algorithm (‘seg-
mental’).

There are three things to notice about Table 2. First, the
error rates clearly decrease from left to right. Thus, the rel-
ative performance of the three algorithms is clear: global
DTW performs worst, subsequence DTW performs better,
and segmental DTW performs best. Second, subsequence

5 Since the annotated beat locations generally fall between frames, we
use simple linear interpolation between the nearest predicted alignments.

Figure 2. Error tolerance curves for the global, subse-
quence, and segmental DTW algorithms. Each point on
a curve indicates the percentage of predicted beat align-
ments that are incorrect for a given error tolerance. An
additional curve is shown for an oracle system, which pro-
vides a lower bound on performance.

DTW reaches an asymptotic error rate of 6.1%. These er-
rors are passages that the subsequence DTW algorithm is
matching incorrectly because it fails to take into account
the temporal ordering of the solo segments. For example,
it incorrectly matches the main theme to the recapitulation
or matches repeated segments to the wrong repetition. Bet-
ter features are unlikely to fix these errors. Third, the seg-
mental DTW algorithm has perfect performance for error
tolerances of 2 seconds and above. This suggests that the
2.2% of errors at a 1 second error tolerance are an indica-
tion of poor alignments but correctly identified passages.
We will investigate these errors in the discussion section.

Figure 2 compares the performance of the three systems
on temporal alignments. The figure shows the error toler-
ance curves for error tolerances ranging from 0 to 250 ms.
Each point on a curve indicates the percentage of predicted
beat timestamps that are incorrect at a given error toler-
ance. There is also a curve for an oracle system, which
will be explained in section 5.2.

There are three things to notice about Figure 2. First,
the curves are identical for error tolerances < 25 ms. This
indicates that when an algorithm is “locked onto” a sig-
nal, the limit to its precision is the same for all three algo-
rithms. This is what we expect, since all three algorithms
are based on the same fundamental dynamic programming
approach and use the same features. This is a realm where
the segmental DTW algorithm does not help, but where
better features are needed to improve performance. Sec-
ond, the curves begin to diverge significantly for error tol-
erances > 50 ms. This is a realm where the segmental
DTW algorithm provides significant benefit to system per-
formance. For example, at 100 ms error tolerance, the seg-
mental DTW algorithm improves the error rate from 22.6%
and 17.1% to 12.4%. Third, the curves do not intersect. In
other words, the segmental DTW algorithm provides uni-



lateral benefit across all error tolerances.

5. DISCUSSION

In this section, we investigate three questions of interest
that will give deeper insight into system performance.

5.1 Investigation of Boundary Errors

The first question of interest is: “What is causing the seg-
ment boundary errors?” We saw from Table 2 that 2.2% of
predicted segment boundaries are incorrect at an error tol-
erance of 1 second. We investigated all of these errors to
determine the root cause of the problem.

There are three main observations we can make from
our investigations of segment boundary errors. First, most
segment boundary errors are a result of a mistake on the
part of the musician or musical group. In one instance,
the violin player messes up and stops playing for 3-4 beats
at the end of a phrase. In another instance, the group is
very out of sync on the last note. These two specific mis-
takes caused more than 50% of the segment boundary er-
rors, since a single mistake will cause errors on all of the
queries that contain the recording. Second, the maximum
tempo ratio of 2x imposed by the DTW step sizes causes
errors when the instantaneous tempo difference is extreme.
One example came from a recording in which the violin-
ist slows down very significantly (much more than 2x) be-
cause he or she is clearly struggling with the rolled chords
in the last several measures. Another example came from
a recording that had a very pronounced rubato at the end of
the piece. This caused problems when the recording was
paired with a performance that incorporated very little ru-
bato at the end. Third, all of the segment boundary errors
were predictions of the end of a segment. The DTW al-
gorithm (and its variants) do well in smoothing out errors
in the beginning and middle of segments, but it often fails
at the end of a segment because there is no signal “on the
other side” to smooth out the prediction.

5.2 Lower Bound on Error Rate

The second question of interest is: “What is the lower
bound on error rate?” In other words, what is the best error
rate that we could hope to achieve given a current state-
of-the-art alignment system? In order to answer this ques-
tion, we ran an experiment with two major changes. The
first change is that we assume this system is an oracle and
knows the ground truth segment boundaries for each solo
segment. The second change is that we use an alignment
system [22] that was designed to maximize alignment pre-
cision in an offline context. Note that this oracle system re-
quires more than 45 sec on average to align each query (i.e.
align multiple solo recordings against a full-mix record-
ing), so it would not be suitable given the runtime con-
straints of our user-facing application. (In contrast, our
proposed system required an average of 5.20 sec.) Thus,
we can interpret the performance of the oracle system as
a lower bound on error rate when runtime constraints are
ignored.

The performance of this oracle system is shown in
Figure 2 (overlaid on the same figure from the results sec-
tion). There are two things to point out about this lower
bound curve. First, the proposed system approximately
achieves the lower bound for error tolerances > 175 ms.
Second, the lower bound shows the most room for im-
provement in the 50 to 100 ms error tolerance range. For a
75 ms error tolerance, the proposed system and oracle sys-
tem achieve error rates of 17.8% and 14.0%, respectively.

5.3 Listening to the Accompaniment Track

The third question of interest is: “How does the time-scale
modified accompaniment track actually sound?” One use-
ful way we can get a sense of how well the accompaniment
is “following” the solo recordings is to create a stereo track
in which one channel contains the unchanged solo record-
ing and the other channel contains the time-stretched ac-
companiment track. By listening to both tracks simulta-
neously, we can gain an intuitive sense of how well the
system is doing. We have posted several samples of these
stereo recordings for interested readers. 6

There are three qualitative observations we can make
regarding these informal listening tests. First, the system
performs much more erratically when the solo part is not
dominant. This was particularly a problem for the Bach
double violin concerto since there are two equally impor-
tant violin parts. During sections when the 2nd violin part
is the dominant voice, the accompaniment track has signif-
icantly more time-warping artifacts. Second, the system
handles rapid notes very well and prolonged notes very
poorly. When the solo part is holding a single long note,
the accompaniment track would sometimes have very se-
vere temporal distortion artifacts. Third, the time-stretched
accompaniment track often has a “jerky” tempo, especially
in situations when the solo part has a long note. The ac-
companiment track is clearly tracking the solo recordings,
but it often has short, sudden bursts of tempo speedups and
equally short, sudden bursts of tempo slowdowns. One
way to address this issue would be to do some type of tem-
poral smoothing of the predicted alignment in order to en-
sure a more natural sounding accompaniment.

6. CONCLUSION

We have described a system that time-scale modifies an
existing full-mix recording to run synchronously to an or-
dered set of solo-only user recordings of the same piece.
We propose a segmental DTW algorithm that simultane-
ously solves the passage identification and temporal align-
ment problems, and we demonstrate the benefit of this al-
gorithm over two other baseline systems on a pilot data set
of classical violin music. Areas of future work include ex-
panding the pilot data set, exploring features that are both
computationally efficient and well-suited to the asymmet-
ric nature of the scenario, and investigating pre-processing
steps for solo detection and separation.

6 http://www.anonymizedurl.edu



7. ACKNOWLEDGMENTS

Thanks to Zhepei Wang and Thitaree Tanprasert for
helping with the data annotation. The International
Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and Fraunhofer Institut für Integrierte Schaltungen
IIS.

8. REFERENCES

[1] Andreas Arzt and Gerhard Widmer. Real-time music
tracking using multiple performances as a reference.
In Proc. of the International Conference on Music In-
formation Retrieval (ISMIR), pages 357–363, Málaga,
Spain, 2015.

[2] Michael A. Casey, Christophe Rhodes, and Mal-
colm Slaney. Analysis of minimum distances in high-
dimensional musical spaces. IEEE Transactions on Au-
dio, Speech, and Language Processing, 16(5):1015–
1028, 2008.

[3] Arshia Cont, José Echeveste, and Jean-Louis Giavitto.
The Cyber-Physical System Approach for Automatic
Music Accompaniment in Antescofo. In Acoustical So-
ciety Of America, Providence, Rhode Island, United
States, May 2014.

[4] Roger B. Dannenberg and Ning Hu. Polyphonic au-
dio matching for score following and intelligent audio
editors. In Proc. of the International Computer Mu-
sic Conference (ICMC), pages 27–34, San Francisco,
USA, 2003.

[5] Simon Dixon. Live tracking of musical performances
using on-line time warping. In Proc. of the 8th Interna-
tional Conference on Digital Audio Effects, pages 92–
97. Citeseer, 2005.

[6] Mark Dolson and Jean Laroche. Improved phase
vocoder time-scale modification of audio. IEEE Trans-
actions on Speech and Audio Processing, 7(3):323–
332, 1999.

[7] Jonathan Driedger and Meinard Müller. Improv-
ing time-scale modification of music signals using
harmonic-percussive separation. IEEE Signal Process-
ing Letters, 21(1):105–109, 2014.

[8] Jonathan Driedger and Meinard Müller. A review on
time-scale modification of music signals. Applied Sci-
ences, 6(2):57–82, February 2016.

[9] Sebastian Ewert and Meinard Müller. Refinement
strategies for music synchronization. In Proceedings of
the International Symposium on Computer Music Mod-
eling and Retrieval (CMMR), volume 5493 of Lecture
Notes in Computer Science, pages 147–165, Copen-
hagen, Denmark, May 2008.

[10] Sebastian Ewert, Meinard Müller, and Peter Grosche.
High resolution audio synchronization using chroma
onset features. In Proc. of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 1869–1872, Taipei, Taiwan, April
2009.

[11] Christian Fremerey, Meinard Müller, and Michael
Clausen. Handling repeats and jumps in score-
performance synchronization. In Proc. of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 243–248, Utrecht, The Netherlands, 2010.

[12] Ning Hu, Roger B. Dannenberg, and George Tzane-
takis. Polyphonic audio matching and alignment for
music retrieval. In Proc. of the IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, 2003.

[13] Fumitada Itakura. Minimum prediction residual prin-
ciple applied to speech recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing,
23(1):67–72, 1975.

[14] Frank Kurth and Meinard Müller. Efficient index-based
audio matching. IEEE Transactions on Audio, Speech,
and Language Processing, 16(2):382–395, February
2008.

[15] Robert Macrae and Simon Dixon. Accurate real-time
windowed time warping. In Proc. of the International
Conference on Music Information Retrieval (ISMIR),
pages 423–428, 2010.

[16] Meinard Müller. Fundamentals of Music Processing:
Audio, Analysis, Algorithms, Applications. Springer,
2015.

[17] Meinard Müller and Daniel Appelt. Path-constrained
partial music synchronization. In Proc. of the Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1, pages 65–68, Las Ve-
gas, Nevada, USA, April 2008.

[18] Meinard Müller and Sebastian Ewert. Joint structure
analysis with applications to music annotation and
synchronization. In Proc. of the International Confer-
ence on Music Information Retrieval (ISMIR), pages
389–394, Philadelphia, Pennsylvania, USA, Septem-
ber 2008.

[19] Meinard Müller, Frank Kurth, and Michael Clausen.
Audio matching via chroma-based statistical features.
In Proc. of the International Conference on Music In-
formation Retrieval (ISMIR), pages 288–295, London,
UK, 2005.

[20] Meinard Müller, Frank Kurth, and Michael Clausen.
Chroma-based statistical audio features for audio
matching. In Proc. of the Workshop on Applications
of Signal Processing (WASPAA), pages 275–278, New
Paltz, New York, USA, October 2005.



[21] Meinard Müller, Henning Mattes, and Frank Kurth. An
efficient multiscale approach to audio synchronization.
In Proc. of the International Conference on Music In-
formation Retrieval (ISMIR), pages 192–197, Victoria,
Canada, October 2006.

[22] Thomas Prätzlich, Jonathan Driedger, and Meinard
Müller. Memory-restricted multiscale dynamic time
warping. In Proc. of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP), pages 569–573, Shanghai, China, 2016.

[23] Christopher Raphael. Music plus one and machine
learning. In Proc. of the International Conference on
Machine Learning (ICML), pages 21–28, 2010.

[24] Christopher Raphael and Yupeng Gu. Orchestral ac-
companiment for a reproducing piano. In Proc. of the
International Computer Music Conference (ICMC),
2009.

[25] Hiroaki Sakoe and Seibi Chiba. Dynamic program-
ming algorithm optimization for spoken word recog-
nition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43–49, 1978.

[26] Stan Salvador and Philip Chan. FastDTW: Toward ac-
curate dynamic time warping in linear time and space.
In Proc. of the KDD Workshop on Mining Temporal
and Sequential Data, 2004.

[27] Siying Wang, Sebastian Ewert, and Simon Dixon. Ro-
bust and efficient joint alignment of multiple musi-
cal performances. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(11):2132–2145,
2016.


