
KNOWN-ARTIST LIVE SONG ID: A HASHPRINT APPROACH

TJ Tsai1 Thomas Prätzlich2 Meinard Müller2
1University of California Berkeley, Berkeley, CA

2International Audio Laboratories Erlangen, Erlangen, Germany
tjtsai@berkeley.edu, thomas.praetzlich,meinard.mueller@audiolabs-erlangen.de

ABSTRACT

The goal of live song identification is to recognize a song
based on a short, noisy cell phone recording of a live per-
formance. We propose a system for known-artist live song
identification and provide empirical evidence of its feasi-
bility. The proposed system represents audio as a sequence
of hashprints, which are binary fingerprints that are derived
from applying a set of spectro-temporal filters to a spectro-
gram representation. The spectro-temporal filters can be
learned in an unsupervised manner on a small amount of
data, and can thus tailor its representation to each artist.
Matching is performed using a cross-correlation approach
with downsampling and rescoring. We evaluate our ap-
proach on the Gracenote live song identification bench-
mark data set, and compare our results to five other base-
line systems. Compared to the previous state-of-the-art,
the proposed system improves the mean reciprocal rank
from .68 to .79, while simultaneously reducing the average
runtime per query from 10 seconds down to 0.9 seconds.

1. INTRODUCTION

This paper tackles the problem of song identification based
on short cell phone recordings of live performances. This
problem is a hybrid of exact-match audio identification and
cover song detection. Similar to the exact-match audio
identification problem, we would like to identify a song
based on a short, possibly noisy query. The query may
only be a few seconds long, and might be corrupted by ad-
ditive noise sources as well as convolutive noise based on
the acoustics of the environment. Because song identifica-
tion is a real-time application, the amount of latency that
the user is willing to tolerate is very low. Similar to the
cover song detection problem, we would like to identify
different performances of the same song. These perfor-
mances may have variations in timing, tempo, key, instru-
mentation, and arrangement. In this sense, the live song
identification problem is doubly challenging in that it in-
herits the challenges and difficulties of both worlds: it is
given a short, noisy query and expected to handle perfor-
mance variations and to operate in (near) real-time.

c© TJ Tsai, Thomas Prätzlich, Meinard Müller. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: TJ Tsai, Thomas Prätzlich, Meinard Müller. “Known-
Artist Live Song ID: A Hashprint Approach”, 17th International Society
for Music Information Retrieval Conference, 2016.

To make this problem feasible, we must reduce the
searchable set to a tractable size. One way to accom-
plish this is shown by the system architecture in Figure 1.
When a query is submitted, the GPS coordinates of the
cell phone and the timestamp information are used to as-
sociate the query with a concert, which enables the sys-
tem to infer who the musical artist is. Once the artist has
been inferred, the problem is reduced to a known-artist
search: we assume the artist is known, and we would like
to identify which song is being played. The known-artist
search is more tractable because it constrains the set of
possible songs to the musical artist’s studio recordings. In
this work, we will focus our attention on the known-artist
search.

One important assumption in Figure 1 is that the musi-
cal artist or group is popular enough that its concert sched-
ule (dates and locations) can be stored in a database. So,
for example, this system architecture would not work for
an amateur musician performing at a local restaurant. It
would work for popular artists whose concert schedule is
available online.

Exact-match audio identification and cover song detec-
tion have both been explored fairly extensively (e.g. [25]
[1] [22] [20] [19] [7]). There are several successful com-
mercial applications for exact-match music identification,
such as Shazam and SoundHound. Both tasks have ben-
efited from standardized evaluations like the TRECVid
content-based copy detection task [13] and the MIREX
cover song retrieval task [4]. There have also been a num-
ber of works on identifying related musical passages based
on query fragments [8] [10] [2], but most of these works
assume a fragment length that is too long for a real-time
application (10 to 30 seconds). Additionally, these works
mostly focus on classical music, where performed works
are typically indicated on a printed program and where the
audience is generally very quiet (unlike at a rock concert).

In contrast, live song identification based on short cell
phone queries is relatively new and unexplored. One ma-
jor challenge for this task, as with many other tasks, is col-
lecting a suitable data set. Rafii et al. [15] collect a set
of cell phone recordings of live concerts for 10 different
bands, and they propose a method for song identification
based on a binarized representation of the constant Q trans-
form. In this work, we propose an approach based on a bi-
narized representation of audio called hashprints coupled
with an efficient, flexible method for matching hashprint
sequences, and we explore the performance of such an ap-



Figure 1. System architecture of the live song identifi-
cation system. Using GPS and timestamp information,
queries are associated with a concert in order to infer the
artist.

proach on the live song identification task.
This paper is organized as follows. Section 2 describes

the proposed system. Section 3 describes the evaluation of
the system. Section 4 presents some additional analyses of
interest. Section 5 concludes the work.

2. SYSTEM DESCRIPTION

Figure 2 shows a block diagram of the proposed known-
artist search system. There are four main system compo-
nents, each of which is described below.

2.1 Constant Q Transform

The first main system component is computing a con-
stant Q transform (CQT). The CQT computes a time-
frequency representation of audio using a set of logarith-
mically spaced filters with constant Q-factor. 1 This rep-
resentation is advantageous for one very important reason:
the spacing and width of the filters are designed to match
the pitches on the Western musical scale, so the represen-
tation is especially suitable for considering key transposi-
tions. In our experiments, we used the CQT implementa-
tion described by Schörkhuber and Klapuri [18]. Similar
to the work by Rafii et al. [15], we consider 24 subbands
per octave between C3 (130.81 Hz) and C8 (4186.01 Hz).
To mimic the nonlinear compression of the human audi-
tory system, we compute the log of the subbands’ local
energies. At the end of this processing, we have 121 log-
energy values every 12.4 ms.

2.2 Hamming Embedding

The second main system component is computing a Ham-
ming (binary) embedding. Using a Hamming representa-
tion has two main benefits. First, it enables us to store
fingerprints very efficiently in memory. In our implemen-
tation, we represent each audio frame in a 64-dimensional
Hamming space, which allows us to store each hashprint in
memory as a single 64-bit integer. Second, it enables us to
compute Hamming distances between fingerprints very ef-
ficiently. We can compute the Hamming distance between

1 The Q-factor refers to the ratio between the filter’s center frequency
and bandwidth, so a constant Q-factor means that each filter’s bandwidth
is proportional to its center frequency.

Figure 2. Block diagram for a known-artist search. Mul-
tiple pitch-shifted versions of the original studio tracks are
considered to handle the possibility that the live perfor-
mance is performed in a different key.

two hashprints by performing a single logical xor opera-
tor on two 64-bit integers, and then counting the number
of bits in the result. This computation offers significant
savings compared to computing the Euclidean distance be-
tween two vectors of floating point numbers. These com-
putational savings will be important in reducing the latency
of the system.

Our Hamming embedding grows out of two basic prin-
ciples: compactness and robustness. Compactness means
that the binary representation is efficient. This means that
each bit should be balanced (i.e. 0 half the time and 1 half
the time) and that the bits should be uncorrelated. Note that
any imbalance in a bit or any correlation among bits will
result in an inefficient representation. Robustness means
that each bit should be robust to noise. In the context of
thresholding a random variable, robustness means maxi-
mizing the variance of the random variable’s probability
distribution. To see this, note that if the random variable
takes a value that is close to the threshold, a little bit of
noise may cause the random variable to fall on the wrong
side of the threshold, resulting in an incorrect bit. We can
minimize the probability of this occurring by maximizing
the variance of the underlying distribution. 2

The Hamming embedding is determined by applying a
set of 64 spectro-temporal filters at each frame, and then
encoding whether each spectro-temporal feature is increas-
ing or decreasing in time. The spectro-temporal filters are
learned in an unsupervised manner by solving the sequence
of optimization problems described below. These filters
are selected to maximize feature variance, which maxi-
mizes the robustness of the individual bits. Consider the
CQT log-energy values for a single audio frame along with
its context frames, resulting in a R121w vector, where w
specifies the number of context frames. We can stack a
bunch of these vectors into a large RM×121w matrix A,
where M corresponds (approximately) to the total num-
ber of audio frames in a collection of the artist’s studio
tracks. Let S ∈ R121w×121w be the covariance matrix of
A, and let xi ∈ R121w denote the coefficients of the ith

spectro-temporal filter. Then, for i = 1, . . . , 64, we solve
the following sequence of optimization problems:

2 Since the random variable is a linear combination of many CQT val-
ues, the distribution will generally be roughly bell-shaped due to the cen-
tral limit theorem.



maximize xT
i Sxi

subject to ‖xi‖22 = 1

xT
i xj = 0, j = 1, . . . , i− 1.

(1)

The objective function is simply the variance of the fea-
tures resulting from filter xi. So, this formulation max-
imizes the variance (i.e. robustness) while ensuring that
the filters are uncorrelated (i.e. compactness). The above
formulation is exactly the eigenvector problem, for which
very efficient off-the-shelf solutions exist.

Each bit in the hashprint representation encodes
whether the corresponding spectro-temporal feature is in-
creasing or decreasing in time. We first compute delta
spectro-temporal features at a separation of approximately
one second, and then we threshold the delta features at
zero. The separation of one second was determined em-
pirically, and the threshold at zero ensures that the bits are
balanced. Note that if we were to threshold the spectro-
temporal features directly, our Hamming representation
would not be invariant to volume changes (i.e. scaling the
audio by a constant factor would change the Hamming rep-
resentation). Because we threshold on delta features, each
bit captures whether the corresponding spectro-temporal
feature is increasing or decreasing, which is a volume-
invariant quantity.

2.3 Search

The third main system component is the search mech-
anism: given a query hashprint sequence, find the best
matching reference sequence in the database. In this work,
we explore the performance of two different search strate-
gies. These two systems will be referred to as hashprint1
and hashprint2 (abbreviated as hprint1 and hprint2 in Fig-
ure 3). In both approaches, we compute hashprints every
62 ms and using w = 20 context frames. These parameters
were determined empirically.

The first search strategy (hashprint1) is a subsequence
dynamic time warping (DTW) approach based on a Ham-
ming distance cost matrix. The subsequence DTW is a
modification of the traditional DTW approach which al-
lows one sequence (the query) to begin anywhere in the
other recording (the reference) with no penalty. One ex-
planation of this technique can be found in [11]. We allow
{(1, 1), (1, 2), (2, 1)} transitions, which allows live ver-
sions to differ in tempo from studio versions by a factor
up to two. We perform subsequence DTW of the query
with all sequences in the database, and then use the align-
ment score (normalized by path length) to rank the studio
tracks.

The second search strategy (hashprint2) is a cross-
correlation approach with downsampling and rescoring.
First, the query and reference hashprint sequences are
downsampled by a factor of B. For example, when B = 2
every other hashprint is discarded. Next, for each reference
sequence in the database, we determine the frame offset
that maximizes bit agreement between the downsampled
query sequence and the downsampled reference sequence.

The bit agreement at this offset is used as a match score for
the reference sequence. After sorting all of the sequences
in the database by their downsampled match score, we
identify the top 10 candidate sequences. We then rescore
these top 10 candidate sequences using the full hashprint
sequence (i.e. without downsampling). Finally, we re-
sort the top 10 candidate sequences based on their refined
match score. The resulting ranking is the final output of
the system. The advantage of the second search strategy
is computational efficiency: we first do a rough scoring of
the sequences, and only do a more fine-grained scoring on
the top few candidate sequences.

2.4 Pitch Shifting

The fourth main system component is pitch shifting. A
band might perform a live version of a song in a slightly
different key than the studio version, or the live version
may have tuning differences. To ensure robustness to these
variations, we considered pitch shifts up to four quarter
tones above and below the original studio version. So, the
database contains nine hashprint sequences for each studio
track. When performing a search, we use the maximum
alignment score from the nine pitch-shifted versions as the
aggregate score for a studio track. We then rank the studio
tracks according to their aggregate scores.

2.5 Relation to Previous Work

It is instructive to interpret the above approach in light of
previous work. Using multiple context frames in the man-
ner described above is often referred to as shingling [2] or
time delay embedding [20], a technique often used in mu-
sic identification and cover song detection tasks. It allows
for greater discrimination on a single feature vector than
could be achieved based only on a single frame. The tech-
nique of thresholding on projections of maximum variance
is called spectral hashing [26] in the hashing literature. It
can be thought of as a variant of locality sensitive hash-
ing [3], where the projections are done in a data-dependent
way instead of projecting onto random directions. So, we
can summarize our approach as applying spectral hash-
ing to a shingle representation, along with a modification
to ensure invariance to volume changes (i.e. threshold-
ing on delta features). This approach was first proposed
in an exact-match fingerprinting application using reverse-
indexing techniques [23]. Here, instead of using the Ham-
ming embedding to perform a table lookup, we instead use
the Hamming distance between hashprints as a metric of
similarity in a non-exact match scenario.

There are, of course, many other ways to derive a Ham-
ming embedding. The previous work by Rafii et al. [15]
performs the Hamming embedding by comparing each
CQT energy value to the median value of a surrounding
region in time-frequency. Many recent works have ex-
plored Hamming embeddings learned through deep neural
network architectures [17] [12], including a recent work
by Raffel and Ellis [14] proposing such an approach for
matching MIDI and audio files. One advantage of our pro-
posed method is that it learns the audio fingerprint rep-



Artist Name Genre # Tracks
Big K.R.I.T. hip hop 71
Chromeo electro-funk 44
Death Cab for Cutie indie rock 87
Foo Fighters hard rock 86
Kanye West hip hop 92
Maroon 5 pop rock 66
One Direction pop boy band 60
Taylor Swift country, pop 71
T.I. hip hop 154
Tom Petty rock, blues rock 193

Table 1. Overview of the Gracenote live song identifica-
tion data. The database contains full tracks taken from
artists’ studio albums. The queries consist of 1000 6-
second cell phone recordings of live performances (100
queries per artist).

resentation in an unsupervised manner. This is particu-
larly helpful for our scenario of interest, since collecting
noisy cell phone queries and annotating ground truth is
very time-consuming and labor-intensive. Our proposed
method also has the benefit of requiring relatively little
data to learn a reasonable representation. This can be help-
ful if, for example, the artist of interest only has tens of stu-
dio tracks. In such cases, a deep auto-encoder [9] may not
have sufficient training data to converge to a good repre-
sentation. So, our method straddles two different extremes:
it is adaptive to the data (unlike the fixed representation
proposed in [15]), but it works well with small amounts
of data (unlike representations based on deep neural net-
works).

3. EVALUATION

We will describe the evaluation of the proposed system in
three parts: the data, the evaluation metric, and the results.

3.1 Data

We use the Gracenote live song identification data set. This
is a proprietary data set that is used for internal benchmark-
ing of live song identification systems at Gracenote. The
data comes from 10 bands spanning a range of genres, in-
cluding rock, pop, country, and rap. There are two parts
to the data set: the database and the queries. The database
consists of full tracks taken from the artists’ studio albums.
Table 1 shows an overview of the database, including a
brief description of each band and the number of studio
tracks. Note that the number of tracks per artist ranges
from 44 (for newer groups like Chromeo) up to 193 (for
very established musicians like Tom Petty). The queries
consist of 1000 short cell phone recordings of live per-
formances, and were generated in the following fashion.
For each band, 10 live audio tracks were extracted from
Youtube videos, each from a different song. The videos
were all recorded from smartphones during actual live per-
formances. For each cell phone recording, the audio was

Figure 3. Mean reciprocal rank for five baseline systems
and the two proposed systems (hprint1, hprint2).

cropped to exclude any non-music material at the begin-
ning or end (e.g. applause, introducing the song, etc). Fi-
nally, ten 6-second segments evenly spaced throughout the
cropped recording were extracted. Thus, there are 100 6-
second queries for each band, totaling 1000 queries.

3.2 Evaluation Metric

We use mean reciprocal rank (MRR) as our evaluation met-
ric [24]. This measure is defined by the equation

MRR =
1

N

N∑
i=1

1

Ri

where N is the number of queries and Ri specifies the rank
of the correct answer in the ith query. When a song has two
or more studio versions, we define Ri to be the best rank
among the multiple studio versions. The MRR is a succinct
way to measure rankings when there is an objective correct
answer. Note that when a system performs perfectly — it
returns the correct answer as the first item every time —
it will have an MRR of 1. A system that performs very
poorly will have an MRR close to 0. Higher MRR is better.

3.3 Results

Figure 3 compares the performance of the proposed hash-
print1 and hashprint2 systems with five different baselines.
The first two baselines (HydraSVM [16] and Ellis07 [6])
are open-source cover song detection systems. The next
two baselines (Panako [21] and Shazam [25]) are open-
source audio fingerprinting systems. 3 The fifth baseline
is the previously proposed live song identification system
by Rafii et al. [15]. In order to allow for a more fair com-
parison, we also ran this baseline system with four quar-
ter tone pitch shifts above and below the original studio

3 For the Shazam baseline, we used the implementation by Ellis [5].



Figure 4. Breakdown of results by artist. The first three
letters of the artist’s name is shown at bottom.

recording. The two rightmost bars in Figure 3 show the
performance of the hashprint1 and hashprint2 systems, re-
spectively. Figure 4 shows the same results broken down
by artist.

There are four things to notice in Figures 3 and 4.
First, cover song and fingerprinting approaches perform
poorly. The first four baseline systems suggest that exist-
ing cover song detection and existing audio fingerprinting
approaches may not be suitable solutions to the live song
identification problem. Audio fingerprinting approaches
typically assume that the underlying source signal is iden-
tical, and may not be able to cope with the variations found
in live performances. On the other hand, cover song detec-
tion systems typically assume that an entire clean studio
track is available, and may not cope well with short, noisy
queries. Second, the proposed systems improve upon the
previous state-of-the-art. Comparing the three rightmost
systems, we see that the two proposed systems improve the
MRR from .68 (rafii) up to .78 (hashprint1) and .79 (hash-
print2). Given the reciprocal nature of the evaluation met-
ric, this amounts to a major improvement in performance.
Third, the more computationally efficient version of the
proposed system (hashprint2) has the best performance. In
system design, we often sacrifice accuracy for efficiency.
But in this case, we observe no degradation in system per-
formance while reducing computational cost. The reason
for this, as we will see in Section 4, is because the extra de-
grees of freedom in the DTW matching are not necessary.
We will also investigate the runtime performance of these
systems in the next section. Fourth, performance varies
by artist. We see a wide variation in MRR from artist to
artist, but all three live song identification systems gener-
ally agree on which artists are ‘hard’ and which are ‘easy’.
One major factor determining this difficulty level is how
much variation there is between an artist’s studio recording
and live performance. The other major factor, of course, is

Matching Downsample MRR Runtime (s)
DTW - .78 29.3
xcorr 1 .81 3.43
xcorr 2 .80 1.26
xcorr 3 .79 .90
xcorr 4 .77 .76
xcorr 5 .73 .69

Table 2. Effect of downsampling on a cross-correlation
matching approach. The third and fourth columns show
system performance and average runtime required to pro-
cess each 6-second query. The top row shows the per-
formance of a DTW matching approach for comparison.
The first and fourth rows correspond to the hashprint1 and
hashprint2 systems shown in Figure 3.

how many studio tracks are in the database. Note that the
best performance (Chromeo) and worst performance (Tom
Petty) correlate with how many studio tracks the artist had.

4. ANALYSIS

In this section, we investigate two different questions of
interest about the proposed systems.

4.1 Runtime

The first question of interest to us is “What is the runtime
of the proposed systems?” Since live song identification is
a real-time application, the amount of latency is a very im-
portant consideration. Table 2 shows the average runtime
of a cross-correlation approach across a range of downsam-
pling rates. This is the average amount of time required to
process each 6-second query. 4 The runtime for a subse-
quence DTW approach is also shown for reference. The
first and fourth rows (highlighted in bold) correspond to
the hashprint1 and hashprint2 systems shown in Figure 3.

There are three things to notice about Table 2. First,
cross-correlation is unilaterally better than DTW. When we
compare the first two rows of Table 2, we see that switch-
ing from DTW to cross-correlation drastically reduces
the runtime (from 29.3s to 3.43s) while simultaneously
improving the performance (from .78MRR to .81MRR).
These results are an indication that the extra degrees of
freedom in the DTW matching are not beneficial or neces-
sary. Across a short 6-second query, it appears that we can
simply assume a 1-to-1 tempo correspondence and allow
the context frames in each hashprint to absorb slight mis-
matches in timing. Of course, this conclusion only gener-
alizes to the extent that these 10 artists are representative
of other live song identification scenarios.

Second, downsampling trades off accuracy for effi-
ciency. When we compare the bottom five rows of Table 2,
we see a tradeoff between MRR and average runtime: as
downsampling rate increases, we sacrifice performance for
efficiency. For a downsampling rate of 3 (the hashprint2

4 Note that the runtime scales linearly with the size of the database. So,
for example, the runtime for Tom Petty will be longer than for Chromeo.



Figure 5. Learned filters for Big K.R.I.T. (top four rows)
and Taylor Swift (bottom four rows). The filters are or-
dered first from left to right, then from top to bottom. Each
filter spans .372 sec and covers a frequency range from C3
to C8.

system), we can reduce the average runtime to under a sec-
ond, while only sacrificing a little on accuracy (MRR falls
from .81 to .79). Note that the previously proposed system
by Rafii et al. [15] has a self-reported runtime of 10 sec-
onds per query, so the hashprint2 system may offer sub-
stantial improvement in runtime efficiency. 5

Third, there is a floor to the runtime. Note that using
a downsampling rate higher than 3 only benefits the aver-
age runtime marginally. This is because there is a fixed
cost (about .5 seconds) for computing the CQT. The down-
sampling can only improve the time spent searching the
database, but the time required to compute the query hash-
prints is a fixed cost. In a commercial application, how-
ever, the CQT could be computed in a streaming manner,
so that the effective latency experienced by the user is de-
termined by the search time. Such an optimization, how-
ever, is beyond the scope of this work.

4.2 Filters

The second question of interest to us is “What do the
learned filters look like?” This can provide intuition about
what type of information the hashprint is capturing. Fig-
ure 5 shows the top 32 learned filters for Big K.R.I.T. (top
four rows) and Taylor Swift (bottom four rows). The fil-
ters are arranged first from left to right, and then from top
to bottom. Each filter spans .372 sec (horizontal axis) and
covers a frequency range from C3 to C8 (vertical axis).

There are three things to notice about the filters in Fig-
ure 5. First, they contain both temporal and spectral mod-
ulations. Some of the filters primarily capture modula-
tions in time, such as filters 3, 4, 5, and 8 in the first row.
Some filters primarily capture modulations in frequency,
such as the filters in row 3 that contain many horizontal
bands. Other filters capture modulations in both time and

5 Since we re-implemented this baseline system without optimizing for
runtime efficiency, we rely on the self-reported runtime in [15].

frequency, such as filters 15 and 16 (in row 2), which seem
to capture temporal modulations in the higher frequencies
and spectral modulations in the lower frequencies. The im-
portant thing to notice is that both types of modulations
are important. If our hashprint representation only consid-
ered the CQT energy values for a single context frame, we
would hinder the representational power of the hashprints.

Second, the filters capture both broad and fine spectral
structures. Many of the filters capture pitch-like quanti-
ties based on fine spectral structure, which appear as thin
horizontal bands. But other filters capture very broad spec-
tral structure (such as filter 6, row 1) or treat broad ranges
of frequencies differently (such as filters 15 and 16, previ-
ously mentioned). Whereas many other feature representa-
tions often focus on only fine spectral detail or only broad
spectral structure, the hashprint seems to be capturing both
types of information.

Third, the filters are artist-specific. When we compare
the filters for Big K.R.I.T. and the filters for Taylor Swift,
we can see that the hashprint representation adapts to the
characteristics of the artist’s music. The first four filters
of both artists seem to be very similar, but thereafter the
filters begin to reflect the unique characteristics of each
artist. For example, more of the filters for Big K.R.I.T.
seem to emphasize temporal modulations, perhaps an indi-
cation that rap tends to be more rhythmic and percussion-
focused. In contrast, the filters for Taylor Swift seem to
have more emphasis on pitch-related information, which
may indicate music that is more based on harmony.

5. CONCLUSION

We have proposed a system for a known-artist live song
identification task based on short, noisy cell phone record-
ings. Our system represents audio as a sequence of hash-
prints, which is a Hamming embedding based on a set of
spectro-temporal filters. These spectro-temporal filters can
be learned in an unsupervised manner to adapt the hash-
print representation for each artist. Matching is performed
using a cross-correlation approach with downsampling and
rescoring. Based on experiments with the Gracenote live
song identification benchmark, the proposed system im-
proves the mean reciprocal rank of the previous state-of-
the-art from .68 to .79, while simultaneously reducing the
average runtime per query from 10 seconds down to 0.9
seconds. Future work will focus on characterizing the ef-
fect of various system parameters such as number of con-
text frames, Hamming dimension, and database size.

6. ACKNOWLEDGMENTS

We would like to thank Zafar Rafii and Markus Cremer
at Gracenote for generously providing the data set, and
Brian Pardo for helpful discussions. Thomas Prätzlich has
been supported by the German Research Foundation (DFG
MU 2686/7-1). The International Audio Laboratories Er-
langen are a joint institution of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and Fraunhofer In-
stitut für Integrierte Schaltungen IIS.



7. REFERENCES

[1] S. Baluja and M. Covell. Waveprint: Efficient
wavelet-based audio fingerprinting. Pattern Recogni-
tion, 41(11):3467–3480, May 2008.

[2] M. Casey, C. Rhodes, and M. Slaney. Analysis of min-
imum distances in high-dimensional musical spaces.
IEEE Transactions on Audio, Speech, and Language
Processing, 16(5):1015–1028, 2008.

[3] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the twentieth annual
symposium on Computational Geometry, pages 253–
262, 2004.

[4] J. Downie, M. Bay, A. Ehmann, and M. Jones. Audio
cover song identification: MIREX 2006-2007 results
and analyses. In Proceedings of the International So-
ciety for Music Information Retrieval (ISMIR), pages
468–474, 2008.

[5] D. Ellis. Robust landmark-based audio fingerprinting.
Available at http://labrosa.ee.columbia.
edu/matlab/fingerprint/, 2009.

[6] D. Ellis and G. Poliner. Identifying ‘cover songs’ with
chroma features and dynamic programming beat track-
ing. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1429–
1432, 2007.

[7] D. Ellis and B. Thierry. Large-scale cover song recog-
nition using the 2d fourier transform magnitude. In
Proceedings of the International Society for Music In-
formation Retrieval (ISMIR), pages 241–246, 2012.

[8] P. Grosche and M. Müller. Toward characteristic audio
shingles for efficient cross-version music retrieval. In
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 473–476,
2012.

[9] G. Hinton and R. Salakhutdinov. Reducing the di-
mensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[10] F. Kurth and M. Müller. Efficient index-based audio
matching. IEEE Transactions on Audio, Speech, and
Language Processing, 16(2):382–395, 2008.

[11] M. Müller. Fundamentals of Music Processing.
Springer, 2015.

[12] M. Norouzi, D. Blei, and R. Salakhutdinov. Hamming
distance metric learning. In Advances in neural infor-
mation processing systems, pages 1061–1069, 2012.

[13] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel,
A.F. Smeaton, W. Kraaij, and G. Quénot. TRECVID
2011 - An Overview of the Goals, Tasks, Data, Eval-
uation Mechanisms and Metrics. In TRECVID 2011
- TREC Video Retrieval Evaluation Online, Gaithers-
burg, Maryland, USA, December 2011.

[14] C. Raffel and D. Ellis. Large-scale content-based
matching of midi and audio files. In Proceedings of the
International Society for Music Information Retrieval
(ISMIR), pages 234–240, 2015.

[15] Z. Rafii, B. Coover, and J. Han. An audio fingerprinting
system for live version identification using image pro-
cessing techniques. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 644–648, 2014.

[16] S. Ravuri and D. Ellis. Cover song detection: from high
scores to general classification. In IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 65–68, 2010.

[17] R. Salakhutdinov and G. Hinton. Semantic hash-
ing. International Journal of Approximate Reasoning,
50(7):969–978, 2009.

[18] C. Schörkhuber and A. Klapuri. Constant-q transform
toolbox for music processing. In Sound and Music
Computing Conference, pages 3–64, 2010.

[19] J. Serra, E. Gómez, and P. Herrera. Audio cover song
identification and similarity: background, approaches,
evaluation, and beyond. In Advances in Music Infor-
mation Retrieval, pages 307–332. Springer, 2010.

[20] J. Serra, X. Serra, and R. Andrzejak. Cross recurrence
quantification for cover song identification. New Jour-
nal of Physics, 11(9):093017, 2009.

[21] J. Six and M. Leman. Panako: a scalable acoustic fin-
gerprinting system handling time-scale and pitch mod-
ification. In Proceedings of the International Society
for Music Information Retrieval (ISMIR), 2014.

[22] R. Sonnleitner and G. Widmer. Quad-based audio fin-
gerprinting robust to time and frequency scaling. In
Proceedings of the International Conference on Dig-
ital Audio Effects, 2014.

[23] T. Tsai and A. Stolcke. Robust and efficient multi-
ple alignment of unsynchronized meeting recordings.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(5):833–845, 2016.

[24] E.M. Voorhees. The TREC-8 question answering track
report. In Proceedings of the 8th Text Retrieval Confer-
ence, pages 77–82, 1999.

[25] A. Wang. An industrial-strength audio search algo-
rithm. In Proceedings of the International Society
for Music Information Retrieval (ISMIR), pages 7–13,
2003.

[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.
In Advances in Neural Information Processing Systems
21 (NIPS’09), pages 1753–1760, 2009.


