
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Known-Artist Live Song Identification Using Audio
Hashprints

TJ Tsai, Member, IEEE, Thomas Prätzlich, Student Member, IEEE, and Meinard Müller, Senior Member, IEEE

Abstract—The goal of live song identification is to allow
concertgoers to identify a live performance by recording a few
seconds of the performance on their cell phone. This article
proposes a multi-step approach to address this problem for
popular bands. In the first step, GPS data is used to associate
the audio query with a concert in order to infer who the musical
artist is. This reduces the search space to a dataset containing
the artist’s studio recordings. In the next step, the known-artist
search is solved by representing the audio as a sequence of binary
codes called hashprints, which can be efficiently matched against
the database using a two-stage cross-correlation approach. The
hashprint representation is derived from a set of spectro–
temporal filters that are learned in an unsupervised, artist-specific
manner. On the Gracenote live song identification benchmark,
the proposed system outperforms five other baseline systems and
improves the mean reciprocal rank of the previous state-of-the-
art from .68 to .79, while simultaneously reducing the average
runtime per query from 10 seconds to 0.9 seconds. We conduct
extensive analyses of major factors affecting system performance.

Index Terms—song identification, live performance, finger-
printing, cover song, audio matching.

I. INTRODUCTION

THIS article tackles the problem of live song identification.
A person goes to a live concert, hears a song that he or

she likes, and wants to know: “What song is this?” Ideally,
the person can simply open an app on his or her cell phone,
record a few seconds of the performance, and get an answer.
Even if the song is already known, such an app could provide
a convenient way for concertgoers to purchase music instantly.
While there are several commercially successful apps like
Shazam and SoundHound that can identify pre-recorded music
playing on the radio, the technology for identifying live music
is lagging behind. This work offers a step towards bridging that
gap.

Live song identification is a hybrid of two well-studied
problems: audio fingerprinting and cover song detection.1 Au-
dio fingerprinting attempts to uniquely identify a segment of
audio in a database of clean recordings. This is what Shazam
does. Cover song detection attempts to identify cover versions
of the same song. Each of these well-studied problems has

T. Tsai is with the Department of Engineering at Harvey Mudd College,
301 Platt Blvd., Claremont, CA 91711. E-mail: ttsai@hmc.edu

T. Prätzlich and M. Müller are with the International Audio Labo-
ratories Erlangen, Am Wolfsmantel 33, 91058 Erlangen, Germany. E-
mail: thomas.praetzlich@audiolabs-erlangen.de, meinard.mueller@audiolabs-
erlangen.de

Manuscript received April 19, 2005; revised August 26, 2015.
1Audio fingerprinting is also often referred to as audio identification or

exact-match audio search. Cover song detection is also often referred to as
version identification. See chapter 7 in [1] for a broad overview of both
problems.

certain factors that make the problem challenging and certain
factors that make the problem easier. For audio fingerprinting,
one major factor that makes the problem challenging is that
the queries are short and noisy. Also, audio fingerprinting
applications like Shazam often have to run in real-time, so
runtime latency can be a big challenge. The factor that makes
audio fingerprinting much easier is that such systems typically
assume an exact match in the underlying source signals,
possibly with some simple systematic distortions (like tempo
change or room acoustics) or other additive sounds in the
environment. For cover song detection, the factor that makes
the problem challenging is that the match is very fuzzy —
cover versions can differ in key, tempo, arrangement, and
instrumentation, and these differences can make the matching
problem much more subjective. One factor that makes cover
song detection easier is that the problem is offline, so runtime
latency is less of a factor. Also, cover song systems typically
assume that the “query” is a clean studio recording of an entire
song, so length of query and other additive sound sources and
distortion are typically not an issue.

Live song identification is a hybrid of these two problems in
the sense that it inherits the challenges from both. Like audio
fingerprinting, the queries are short and noisy, and the system
must run in real-time. Like cover song detection, the match
is somewhat fuzzy. While the differences between an artist’s
live performance and studio recording may be less drastic
than the differences between two different cover versions, the
live song identification problem must nonetheless cope with
differences in key, tempo, arrangement, and instrumentation
that are typical of live performances.

Despite these similarities, the live song identification sce-
nario violates the assumptions of these two problems. For
example, audio fingerprinting systems are not designed to
handle variations like a difference in instrumentation or a vo-
calist improvising on a melody. Likewise, cover song detection
systems typically assume that a recording of the entire song is
available, so that it is possible to analyze chord progressions
and harmonies. Such an analysis is unlikely to work well on
a short query that lasts only a few seconds long.

There has been a lot of previous work in audio finger-
printing and cover song detection. Audio fingerprinting has
received a lot of interest in industry, with work coming
out of companies such as Philips [2] [3], Google [4][5],
Telefonica [6][7], and Gracenote [8]. There are several com-
mercial applications for exact-match audio identification, such
as Shazam, SoundHound, Viggle, and MusicID. Both tasks
have also benefited from organized evaluations in the academic
community. The TRECVID content based copy detection task
[9], for example, spurred a lot of work in audio (and video)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

fingerprinting (see [9] for a list of participating teams and a
comparison of all submitted systems). Likewise, the MIREX
cover song evaluation [10] spurred progress on cover song
detection [11][12][13][14]. The million song dataset [15] has
also allowed researchers to explore cover song retrieval at a
large scale [16][17][18][19][20].

There have also been a number of works in audio matching
[21][22][23][24]. Audio matching is another hybrid of audio
fingerprinting and cover song detection, where the goal is to
find segments of audio that are musically similar to a short
audio query. There are a few major differences between these
approaches and the live song identification scenario considered
in this article. One difference is that many of these works are
offline tasks, where the fragment length is too long for a real-
time application (10 to 30 seconds) or runtime latency is not
considered. Another difference is that the query fragments are
often extracted from clean studio recordings, rather than from
noisy cell phone recordings. Yet another significant difference
is that these approaches mostly focus on classical music, where
the audience is generally very quiet (unlike at a rock concert).

In contrast, live song identification based on short cell phone
queries is relatively new and unexplored. One major reason for
this is the difficulty of collecting and annotating a suitable data
set. Rafii et al. [25] collect a set of cell phone recordings of
live concerts for ten popular bands, and they propose a method
for song identification based on a binarized representation of
the constant Q transform. To the best of our knowledge, this
work is the only previous work that directly addresses our
problem of interest. This previous work will serve as a baseline
comparison to our proposed system.

In this work, we propose a solution to the live song
identification problem that has two main components: (1) a
binary representation of audio called hashprints, which are
based on learning a set of spectro–temporal filters in an
unsupervised, artist-specific manner, and (2) a simple, flexible
matching algorithm that allows one to trade off accuracy for
efficiency in order to accommodate the size of each artist’s
searchable database.2

The rest of the paper is organized as follows. Section II
explains the proposed system. Section III discusses its relation
to previous work. Section IV describes the evaluation of
our system. Section V presents various analyses of interest.
Section VI concludes the work. Note that the structure of
this paper is a bit unusual in the sense that we describe
the proposed system before discussing its relation to previous
work. In discussing previous work, we explain how specific
components of the proposed system fit into the existing
literature. This ordering allows us to make these connections
in a much more concrete and specific way.

2This article extends our earlier preliminary work [26]. Whereas our earlier
work simply proposed the system and measured the overall results, this article
provides insight into why the system works well. The analyses in V-A, V-B,
V-C, V-D, V-E, and V-F are new contributions, and they tease apart the impact
of various design choices on overall system performance. Another contribution
of this work is the release of open source code to foster progress on this
problem.

Fig. 1. System architecture of the live song identification system. Using GPS
coordinates of the phone, the query is associated with a concert in order to
infer who the artist is.

II. SYSTEM DESCRIPTION

The proposed live song identification system will be de-
scribed in three parts: the system architecture, the hashprint
representation, and the search algorithm.3

A. System Architecture

Figure 1 shows the system architecture for the proposed
system. When a query is first submitted, the GPS coordinates
of the cell phone and the timestamp information are used
to associate the query with a concert in order to infer who
the artist is. Once the artist has been inferred, the problem is
reduced to a known-artist search: we assume we know who the
artist is, and we are trying to determine which song is being
played. The known-artist assumption is critical to reduce the
search space down to a manageable size. Whereas the space
of all possible songs may contain millions of possibilities, the
set of songs released by a single musical artist is at most a
few hundred.4 In many situations, it is possible to reduce the
search space using metadata that is readily available. For the
cell phone-based system shown in figure 1, we can infer the
artist’s identity by simply comparing the GPS coordinates of
the phone to a database of current concert events. Since our
evaluation data comes from concerts that have occurred in the
past, in this article we will simply assume that such a database
is available. This work will thus primarily focus on addressing
the known-artist search problem.

The system in Figure 1 makes two assumptions. The first
assumption is that the artist’s concert schedule is available
online and can be stored in the database of concert event
information. This is necessary to correctly associate the query
with a concert. The second assumption is that the artist
performs a song from a recorded studio album. These two
assumptions generally hold true for popular bands giving live
performances. This system would not work, however, with
an amateur musician performing at a local restaurant, since
the concert event information would probably not be available
online. The system would also fail if the artist debuts a new
song at a live concert, since the system only searches for songs

3Source code can be found at http://pages.hmc.edu/ttsai/.
4This statement generally holds true for the genres of music considered in

this work. For other genres such as jazz or classical music, the number of
performed works may be larger.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

from existing studio albums. This latter limitation is common
to general fingerprinting systems.

B. Hashprint Representation

We represent audio as a sequence of binary fingerprints
which we call hashprints. We will explain hashprints in three
parts: the motivation behind the design, the mechanics of
the computation, and the formulation of the filter learning
problem.

Motivation. Similar to many other works (e.g. [27][2][6]),
we use a binary representation of audio. Using a binary
feature representation has two important benefits. The first
benefit is compactness in memory. In our implementation we
represent each hashprint as a single 64-bit integer containing
up to 64 bits of information. Since we may have to store
a large amount of audio data in the searchable database,
compactness in memory is an important consideration. The
second benefit is efficient distance computations. We can
compute the Hamming distance between two hashprints very
efficiently by peforming a single logical xor operation between
two 64-bit integers, and then counting the number of 1 bits
in the result. This can be done much faster than computing
(say) the Euclidean distance between two vectors of floating
point numbers. These computational savings will be important
in reducing the latency of the live song identification system.

The hashprint representation grows out of two principles of
good fingerprint design: compactness and robustness. Com-
pactness means that the representation is efficient. Note that
any imbalance in a bit or correlation between bits will result in
an inefficient representation. So, each bit should be balanced
(i.e. 0 half the time and 1 half the time) and the bits should
be uncorrelated with each other. Robustness means that the
individual bits are robust to noise. Within the context of
thresholding a random variable, robustness means maximizing
the variance of the random variable’s probability distribution.5

To see this, consider the scenario where the random variable
takes on a value very close to the threshold (which will be at
the median of the distribution in order to ensure a balanced
bit). A little bit of noise may cause the random variable to fall
on the wrong side of the threshold, resulting in an incorrect bit.
We can reduce the probability of this happening by increasing
the spread of the random variable’s probability distribution.
Robustness means high variance.

Hashprints are also designed to be volume-invariant. This
means that an audio signal will yield the same hashprint
representation even if it is multiplied by a constant factor.
This is an important characteristic to have in the live song
identification scenario, since the volume of the cell phone
recording may not match the volume of the corresponding
studio track.

Mechanics. Figure 2 shows the mechanics of how hash-
prints are computed. There are four steps, which are each
described below.

5As we will see, the random variable will be a linear combination of
many spectrogram log-energy values. Due to the central limit theorem, the
probability distribution will thus be roughly bell-shaped.

Fig. 2. Block diagram of hashprint computation.

The first step is to compute a constant Q transform (CQT).
The CQT is a time-frequency representation of audio that uses
a set of logarithmically spaced filters with constant Q factor.6

One benefit of the CQT is that the filters can be selected to
match the pitches of the Western musical scale. Using the CQT
thus allows our representation to capture musically meaningful
pitch-related information, and it also allows us to efficiently
compute pitch-shifted versions of a signal. In our experiments,
we used the CQT implementation by Schörkhuber and Klapuri
[28]. Similar to the work by Rafii et al. [25], we consider
24 subbands per octave between C3 (130.81 Hz) and C8
(4186.01 Hz). Using a quarter-tone resolution allows us to
handle slight tuning differences as well as key changes. To
mimic the nonlinear processing of the human auditory system,
we take the logarithm of the subband energy values. At the
end of this step, we have 121 subband log-energy values every
12.4 ms.

The second step is to apply a set of filters. At each
frame, we apply a set of N = 64 spectro–temporal filters
in order to generate N real-valued spectro–temporal features.
Each spectro–temporal feature is a linear combination of the
CQT log-energy values from the current audio frame and
several neighboring context frames. The weights of this linear
combination are specified by the spectro–temporal filters. Note
that many other fingerprinting approaches also use spectro–
temporal filters (e.g. [2][29][6]). The difference between our
proposed approach and previous work is that these spectro–
temporal filters are learned in an unsupervised manner and
adapted to each artist’s studio recordings (i.e. the filters are
learned per artist). The filters are selected to yield a set
of uncorrelated random variables with maximum variance,
which (as we discussed previously) yields robust bits. The
formulation of this filter learning problem will be discussed
in detail in the next subsection. At the end of this second step,
we have N features per frame.

The third step is to determine whether each spectro–
temporal feature is increasing or decreasing in time. This
is done by computing delta spectro–temporal features at a
separation of T seconds, and then thresholding the delta
features at zero to ensure that the bits will be balanced. In
our experiments, we used a value of T = .992 seconds, which
was determined empirically (see section V-B). The purpose of
thresholding on delta features is to achieve volume-invariance.
Note that if we were to threshold on the spectro–temporal

6The Q factor of a filter is the ratio between the filter’s center frequency
and its bandwidth.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

features directly, the resulting representation would not be
volume-invariant. Some works achieve volume-invariance by
using filters that are symmetric in time (e.g. [2][6]). We
experimented with per-frame normalization as well, but found
that delta features yield better performance. The reason for
this is because, given a large enough separation T , a delta
feature will effectively be the sum of two independent random
variables. The delta feature will have twice the variance
of a single random variable and thus be more robust to
noise. Delta features also have the benefit of being extremely
efficient to compute — assuming the spectro–temporal features
have already been computed, we only need to perform one
additional subtraction operation per feature per frame. At the
end of this third step, we have N binary values per frame.

The fourth step is to package the N = 64 binary values per
frame into a single 64-bit integer. This representation allows
us to store hashprints very compactly in memory, and also
to compute Hamming distances very efficiently using logical
bitwise operators. The output of this fourth and final step is
a sequence of hashprints, where each hashprint is represented
by a single 64-bit integer.

Before moving on, it is useful to summarize what each of
the four steps is doing. The first step transforms the audio
signal into a time-frequency representation that allows us to
access pitch-related information. The second step takes the
pitch-related information and generates a set of uncorrelated
random variables whose distributions have maximum variance.
The third step maps these random variables to binary 0-1
values in a way that ensures that the bits will be balanced
and the representation will be volume-invariant. The last step
simply packages these binary values in memory in a compact
way.

The only part of Figure 2 that still needs to be explained
is how we learn the spectro–temporal filters. This will be
explained in the next subsection.

Filter Learning Problem. The filters are selected to max-
imize the variance of the resulting spectro–temporal features,
while ensuring that these features are uncorrelated. The filter
learning problem can be formulated as a series of optimiza-
tion problems, which are described below. Consider a vector
∈ R121w containing the CQT log-energy values for an audio
frame and its neighboring context frames, where w specifies
the number of context frames. We can stack a bunch of
these vectors into a large matrix A ∈ RM×121w, where M
corresponds (approximately) to the total number of audio
frames in a set of audio recordings. Let S ∈ R121w×121w

be the covariance matrix of A, and let xi ∈ R121w specify
the coefficients of the ith spectro–temporal filter. Given these
definitions, note that applying a filter simply corresponds
to an inner product between two R121w vectors. Then, for
i = 1, . . . , N , we solve the following:

maximize xT
i Sxi

subject to ‖xi‖22 = 1

xT
i xj = 0, j = 1, . . . , i− 1.

(1)

The objective function represents the variance of the
spectro–temporal features generated by filter xi. The second

constraint guarantees that the filters will be uncorrelated with
each other. This is exactly the eigenvector problem [30], for
which very efficient off-the-shelf routines exist.

To summarize the filter learning problem, we first construct
the data matrix A containing CQT log-energy values from the
artist’s studio tracks. We then compute the covariance matrix
of A, and then compute the eigenvectors of the covariance
matrix. These eigenvectors specify the spectro-temporal filters
that we apply in the hashprint computation. We will compare
this formulation to other learning-based approaches in section
III.

C. Search Algorithm

During the offline portion of the search, we collect audio
from the artist’s studio albums, extract hashprints, and store
the hashprint sequences into a database. In order to handle
the possibility that the live performance may be performed
in a different key (or a slightly different tuning) than the
original studio track, we also consider pitch-shifted versions
of the original studio tracks. In our experiments we consider
up to four quartertones above and below the original key. So,
for each song in the database, there will be nine hashprint
sequences corresponding to the nine different pitch-shifted
versions of the song.

During the online portion of the search, the query hashprint
sequence is compared to the database to find a match. This
online search is done by performing cross-correlation match-
ing with downsampling and rescoring. Each of these three
components is described below.

Cross correlation. For each hashprint sequence in the
database, we determine the offset that maximizes the bit
agreement rate between the query hashprint sequence and the
corresponding portion of the reference hashprint sequence.
This maximum bit agreement rate is used as the match score
with the whole sequence. The maximum match score among
the various pitch-shifted versions of a song is taken as the
aggregate match score for the song. The songs in the database
are then ranked by their aggregate match scores. Note that
this approach assumes an approximately 1-to-1 tempo corre-
spondence between the query and the studio album. We will
investigate the validity of this assumption and also compare
our results with a dynamic time warping approach in section
V-A.

Downsampling. In order to speed up the online search, we
downsample both the query and reference hashprint sequences
by a factor B. So, for example, when B = 2 we only consider
every other hashprint when computing bit agreement scores.
Downsampling by a factor B thus reduces the amount of
search computation by a factor of B2. Our hope is that we
can reduce the search time without affecting the accuracy too
much. The effect of this downsampling will be investigated in
section V-E.

Rescoring. After sorting the reference sequences by their
rough (downsampled) match scores, we can rescore the top L
sequences using the full hashprint sequences without down-
sampling. We can then resort these top L sequences by their
fine-grained match scores. The idea of rescoring is to keep

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the computation savings of a downsampling approach while
retaining the reliability and performance of an exhaustive
match without downsampling. The effect of this rescoring will
be investigated in section V-E.

III. RELATION TO PREVIOUS WORK

The design of the proposed system uses ideas and tech-
niques that are drawn from a rich literature in audio finger-
printing, cover song detection, machine learning, and other
related fields. In this section, we will explain how various
aspects of the system design draw inspiration from and fit
into the context of previous work. We will approach this from
five different angles, each in its own section.

A. Binary Representation: Threshold-Based vs Value-Based

One key design decision is using a binary representation
of audio. Binary representations of audio have been explored
extensively in the audio fingerprinting literature. They are
an excellent design decision for fingerprinting applications
because they are compact in memory and thus allow for
efficient storage of large databases, and they are also suitable
for use with indexing techniques. The large body of works in
audio fingerprinting can be clustered along several different
schemas. In this subsection, we provide one such schema, and
we will offer an alternative schema in the following subsection.

One way to cluster binary fingerprint representations is
to divide them into what we will call threshold-based and
value-based methods. A threshold-based method is one in
which each bit of the representation is derived by computing
some feature of interest and then applying a hard threshold.
This feature of interest could be, for example, the change
in subband energies [2], spectral subband moments [31], or
chroma [32]. A value-based method is one in which some
features of interest are computed, and the values of the features
themselves are directly encoded in the binary representation.
One very commonly adopted approach is to encode the lo-
cation of maxima, such as the absolute or relative location
of spectral peaks [33][34][35][36], the location of maxima in
wavelet coefficients [4][5], or the location of local spectral
luminance maxima [37].

Given the above schema, it is useful to point out that hash-
prints are an example of a threshold-based approach where
the features of interest are delta spectro–temporal features.
Also, note that these two approaches are not necessarily
incompatible. The fingerprints proposed by Anguera et al. [6],
for example, encode the location of a spectral peak for part of
the representation, and adopt a threshold-based approach for
the other bits.

B. Binary Representation: Design Method

Another way to cluster binary fingerprint representations
is to separate them by their design method: manual design,
supervised learning, or unsupervised learning.

The vast majority of fingerprinting works fall into the first
two categories. The first category includes binary representa-
tions that are the result of manual design. These approaches

often use features that have proven to be useful in other
contexts, have useful mathematical properties, or carry some
intuitive advantage. Some examples include methods based on
spectral peaks [33][38], modulation frequency features [39],
chroma [32][40], spectral flatness [41][42], spectral subband
centroids and moments [43][44], and symmetric subband
energy differences [2][6]. Note that value-based methods that
encode the location of a maxima are almost all manually de-
signed representations, since such quantities are generally not
very amenable to mathematical optimization procedures. The
second category includes approaches that incorporate some
form of supervised learning into the fingerprint design process.
Several works, for example, define a family of features and
use boosting techniques to select the features that yield a
maximally robust fingerprint [29][45][31].

There is a recent work that proposes a highly adaptive
method for learning a binary fingerprint representation in an
unsupervised manner [46]. This characteristic is very attractive
in the live song identification scenario because it means that
the binary representation can be tailored to each artist’s music
without having to collect and annotate training data for each
artist. Accordingly, the hashprints described in this work
adopt the same general framework as [46]. A comparison
of these two works is given in the next subsection. In the
vision literature, there are also works that explore unsupervised
learning of binary representations using deep neural networks
[47], and these will be discussed separately in a subsection
below.

C. Shingling & Hashing

Another key design decision is to have each hashprint
describe a relatively long temporal context containing multiple
audio frames. Using multiple context frames in the manner
described above is often referred to as shingling [21] or time
delay embedding [13]. By considering a much higher dimen-
sional space, this technique allows for greater discrimination
on a single feature vector than could be achieved with only a
single audio frame. Not surprisingly, it has proven to be very
useful in handling cover song variations [21][13][14][23].

The hashprint uses hashing techniques to convert each audio
shingle into a set of binary values. Given an audio shingle
represented as a point in some high-dimensional space, it
projects the point onto a direction of maximum variance, and
then thresholds the projection to generate a bit.7 In the hashing
literature, this technique is called spectral hashing [48]. It can
be thought of as a variant of locality sensitive hashing [49],
where the projections are done in a data-dependent way instead
of projecting onto random directions.

Hashprints can thus be thought of as applying spectral
hashing to a shingle representation, along with a slight modifi-
cation (computing delta features) to ensure volume-invariance.
This general framework was first introduced in the context
of an exact-match audio fingerprinting scenario [46]. The
main differences between these works are that (1) live song
identification is not an exact-match scenario, (2) we consider

7More precisely, the hashprint thresholds the delta of the projection. The
main text is left as is to make the connection to spectral hashing more clear.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

pitch-like information by using a CQT rather than a mel
spectrogram, and (3) instead of using the binary representation
for indexing, we use the Hamming distance between hashprints
as a metric of similarity.

D. Relation to DNNs

Given the recent surge of interest in deep neural networks
(DNNs), it is instructive to consider how hashprints relate to
such work. In the machine learning community, many recent
works have explored binary encodings learned through DNN
architectures [50][51][52]. In the music information retrieval
community, Raffel and Ellis [27] propose such an approach for
matching MIDI and audio files. Compared to these approaches,
hashprints offer two advantages in the live song identification
scenario. One advantage is that it learns the binary represen-
tation in an unsupervised manner. This is particularly helpful
for our scenario of interest, since collecting noisy cell phone
data and annotating ground truth is very time-consuming and
laborious. The second advantage is that it requires relatively
little data to learn a reasonable representation. This allows
hashprints to “divide up” the search space in an artist-specific
way, even if the artist only has tens of tracks. In cases like
these, a deep autoencoder [47][53] may not have sufficient
data to converge to a good representation. So, our method
straddles two extremes: it is adaptive to the data (unlike the
fixed representation proposed in [25]), but it works well with
small amounts of data (unlike representations based on DNNs).

Hashprints are similar to DNNs in that both are distributed
representations. In fact, hashprints can be considered a single
layer neural network, where each output node corresponds to a
spectro–temporal filter, the weights for each output node corre-
spond to the filter coefficients, and the output nonlinearity is a
hard threshold.8 So, in a sense, hashprints can be interpreted
as a neural network that is tuned to work well with small
amounts of data and forced to obey certain constraints (e.g.
uncorrelated).

E. Search

The proposed search mechanism is not particularly novel
or complex, but it is nonetheless useful to compare it to
other approaches. Most search mechanisms generally fall into
one of two groups: index-based approaches and exhaustive
approaches.

Index-based approaches use binary representations to look
up matches in a table or index. This lookup can be improved in
a variety of ways, including doing lookups on binary codes that
are close in Hamming distance [2][29], prioritizing more reli-
able hash values [54], using probabilistic methods like locality-
sensitive hashing (LSH) and min-hash to improve retrieval
performance [21][5], or accumulating lots of local fingerprint
matches in an efficient data structure such as a histogram of
offsets [33][6]. The advantage of index-based approaches is
that they offer the ability to scale to large databases. The
disadvantage is that performance drops dramatically when

8More precisely, the weights for each output node would reflect the filter
coefficients for the current frame and its corresponding delta frame. The main
text is again left as is for clarity of illustration.

Artist Name ID Genre Songs Dur (hrs)
Big K.R.I.T. Big hip hop 71 4.2
Chromeo Chr electro-funk 44 3.0
Death Cab for Cutie Dea indie rock 87 6.0
Foo Fighters Foo hard rock 86 6.1
Kanye West Kan hip hop 92 6.6
Maroon 5 Mar pop rock 66 4.0
One Direction One pop boy band 60 3.4
Taylor Swift Tay country, pop 71 4.9
T.I. TI hip hop 154 10.8
Tom Petty Tom rock, blues rock 193 12.1

TABLE I
OVERVIEW OF THE GRACENOTE LIVE SONG IDENTIFICATION DATA. THE

DATABASE CONTAINS FULL TRACKS TAKEN FROM ARTISTS’ STUDIO
ALBUMS. THE QUERIES CONSIST OF 1000 6-SECOND CELL PHONE

RECORDINGS OF LIVE PERFORMANCES (100 QUERIES PER ARTIST).

moving from an exact-match problem to a nonexact-match
problem like live song identification.

Exhaustive approaches simply do an exhaustive search
through the database. The most common example of this is
to perform a full dynamic time warping (DTW) between the
query and all reference sequences (e.g. [27][55]). Many works
explore ways to speed up, optimize, or improve exhaustive
searches. Some examples include assuming a constant global
tempo difference and considering a number of tempo-adjusted
queries [24], using a two-pass approach that first does a rough
scoring in order to identify a set of promising candidates
for a more fine-grained rescoring [32], or using techniques
to deduce and skip computations that are unnecessary [56].
The advantage of exhaustive approaches is that they yield
better results for nonexact-match problems. The disadvantage
is the computational cost of exhaustively searching through
the entire database.

The proposed search algorithm is a very simple exhaustive
approach that has one very useful characteristic: we can
control the tradeoff between accuracy and computational cost.
Provided that the database is not too big, this approach offers
the good results that come with an exhaustive search while
ensuring that the runtime latency will be kept to an acceptable
level.

IV. EVALUATION

We will describe the evaluation of the proposed system in
three parts: the data, the evaluation metric, and the experimen-
tal results.

A. Data

We evaluated the proposed system on the Gracenote live
song identification benchmark. This is a proprietary data set
used for internal benchmarking purposes at Gracenote. The
data comes from 10 different musical artists spanning a range
of genres including pop, rock, country, and rap. Table I shows
the 10 musical artists, along with a brief description and the
number of studio recordings per artist. For each artist, there is a
clean database and a set of noisy queries. The database consists
of full audio tracks taken from the artist’s released studio
albums. The noisy queries are short cell phone recordings of
live performances and were prepared in the following manner.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

ID Ref System Description
Ell [12] cover song max cross-correlation, beat-level chroma
Hyd [11] cover song system combination of [12], [57], and [58]
Sha [33] fingerprint number of matching spectral peak pairs
Pan [59] fingerprint number of matching spectral peak triples
Raf [25] live song Hamming similarity, binarized CQT

TABLE II
SUMMARY OF THE FIVE SYSTEMS USED AS A BASELINE COMPARISON.

Ten Youtube videos of live performances were downloaded
for each artist. These ten videos came from 10 different songs
and were all recorded on consumer cell phones. The videos
were manually pre-processed to cut out non-music material at
the beginning and end of the video (e.g. applause, introducing
the song, etc). Finally, ten 6-second segments evenly spaced
throughout the recording were extracted. There are thus 100
queries per artist, and 1000 queries in total.9

B. Evaluation Metric

The evaluation metric we use is the mean reciprocal rank
(MRR) [60], which is given by the following formula:

MRR =
1

N

N∑
i=1

1

Ri

Here, N refers to the total number of queries in the benchmark,
and Ri refers to the rank of the correct item for the ith query.
Recall that the task is a known-artist search, so we are only
searching a single artist’s database on any given query. For
example, if the ith query is a clip from a Tom Petty concert,
then Ri can only range between 1 and 193, since there are
193 Tom Petty songs. In cases where there is more than one
correct item (i.e. the artist has more than one studio recording
of the same song), the best rank is used. This only applies to
two songs in our entire data set, so that for almost all queries
there is only one true match. Note that MRR ranges between
0 and 1, where a low value close to zero corresponds to poor
performance and 1 corresponds to perfect performance. Higher
MRR is better.

It is useful to point out that MRR is a more suitable metric
than precision and recall for this task. Note that, when there
is only one relevant item, one can deterministically draw
the entire precision-recall curve given the rank of the true
match for each query. In these cases, the entire precision-recall
graph really only contains a single type of information (the
true rank) but in a format that contains a lot of redundant,
vacuous information. For this reason, the MRR is a more
straightforward and appropriate metric to measure system
performance on this task.

C. Results

Figure 3 shows the performance of the proposed system
along with five other baseline systems. Figure 4 shows the
same results broken down by artist.

9For more details on the data set, please contact Zafar Rafii at Gracenote
(zrafii@gracenote.com).

Fig. 3. Performance of proposed hashprint (‘HP’) system compared to five
other baseline systems. The number in parenthesis indicates the downsampling
factor of the cross-correlation search.

The first two baselines are cover song detection systems.
Note that many cover song detection approaches use very long
windows for analysis and cannot be applied directly to this
problem. For example, the approaches by Bertin-Mahieux and
Ellis [16] and Humphrey et al. [17] both accumulate statis-
tics over a sliding window of 75 beat-synchronous features,
corresponding to a window size of 30-45 seconds. Clearly,
such an approach cannot be applied to the six-second queries
in the live song identification benchmark. We selected two
open-source cover song detection systems that were able to
process short queries. The first baseline system (‘Ell’ [12])
measures similarity as the maximum cross-correlation between
two sequences of beat-synchronous chroma features. The
second baseline (‘Hyd’ [11]) is a system-level combination of
three different cover song detection approaches: two variants
of the ‘Ell’ system just described [12][57] and another that
measures similarity based on dynamic programming between
two sequences of beat-synchronous chroma features [58].

The next two baselines are audio fingerprinting systems. The
third baseline (‘Sha’ [33]) is an open-source implementation
[61] of the well-known Shazam algorithm. This approach
identifies the location of spectral peaks in a spectrogram and
encodes the relative locations of peak pairs. Similarity is
computed by counting the number of matching peak pairs that
are aligned in time. The fourth baseline (‘Pan’ [59]) is a variant
of the Shazam algorithm that is invariant to pitch-shifting
and tempo changes. This approach identifies the location of
spectral peaks in a spectrogram based on the constant Q
transform, and then encodes the relative locations of peak
triples.

The fifth baseline (‘Raf’ [25]) is the previously proposed
live song identification system at Gracenote. This system
represents audio in a binary format by first computing a
spectrogram based on the constant-Q transform, and then

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

binarizing the spectrogram using local adaptive thresholding.
The similarity between the query and a reference track is
then determined by generating a similarity matrix based on
the Hamming distance between frames, and then finding the
best alignment using a Hough transform. This system is the
only baseline that is specifically designed for the live song
identification task, so we expect it to have the best performance
among the five baseline systems. Note that the two rightmost
bars (‘HP(1)’, ‘HP(3)’) in figure 3 show the performance
of the proposed system at downsampling rates of 1 and 3,
respectively. Table II shows a brief summary of the key
features from all five baseline systems.

There are four things to notice about the results in figures 3
and 4. First, the audio fingerprinting and cover song detection
baselines perform poorly. The first four baselines suggest
that existing cover song detection and audio fingerprinting
approaches may not be suitable solutions to the live song iden-
tification problem. Audio fingerprinting approaches typically
assume that the underlying source signal is identical, and may
not be able to cope with the variations in live performances.
(Note that the Shazam algorithm performs okay for some
artists like Chromeo that use digital sounds in live perfor-
mances that may be identical to the original studio recordings.)
On the other hand, cover song detection systems typically
assume that an entire clean studio recording is available, and
may not be able to cope with short, noisy queries. Second,
the proposed system substantially improves upon the previous
state-of-the-art. Comparing the three rightmost systems, we
see that the two versions of the proposed system improve the
MRR from .68 (‘Raf’) to .81 (‘HP(1)’) and .79 (‘HP(3)’).
Given the reciprocal nature of the evaluation metric, this
amounts to a substantial improvement in performance. Third,
large computational savings can be achieved for a modest
sacrifice in accuracy. Comparing the two proposed systems,
we see that it is possible to reduce the search computation
by a factor of B2 = 9 while only reducing the MRR
from .81 to .79. We will investigate the tradeoff between
accuracy and search time in section V-E. Fourth, performance
varies by artist. Looking at figure 4, we can see that the
performance of the various systems varies a lot from artist
to artist. The systems generally agree on which artists are
“hard” and which are “easy.” One big factor that affects these
results is how similar or different an artist’s live performance is
compared to the original studio recording. Another big factor
is how many studio tracks the artist has. Note that the artists
with highest and lowest scores (Chromeo and Tom Petty,
respectively) correspond to the artists with the smallest and
largest databases.

V. ANALYSIS

In this section, we investigate seven different questions of
interest. These analyses are chosen to provide insight into why
the system works well. Note that the experimental setup for
all seven analyses is identical to the setup described in IV-A
and IV-B, unless otherwise noted.

Fig. 4. Breakdown of results by artist. The first three letters of the artist’s
name is shown at bottom.

Fig. 5. Comparison of DTW and cross correlation approaches. The horizontal
axis refers to the number of context frames spanned by each hashprint.

A. Effect of Tempo Mismatch

The first question of interest is, “How much do tempo
mismatches affect our results?” As mentioned earlier, the
cross-correlation matching approach assumes that the live per-
formance is at approximately the same tempo as the original
studio recording. Clearly, this assumption is violated if the
artist performs a song faster or slower than the studio version.
We would like to measure how reasonable or unreasonable
this assumption is.

In order to answer this question, we compared the cross-
correlation search algorithm with subsequence DTW. DTW
is a common way to align two feature sequences with local
tempo differences, and subsequence DTW is a variant of
DTW that allows one sequence to begin at any offset in the
other sequence. A brief explanation of subsequence DTW
is given below, and the reader is referred to [1] (chapter
3) for a more detailed explanation. For each reference se-
quence in the database, we compute a Hamming distance
cost matrix between the query and reference hashprint se-
quences, and then we determine the alignment path with
lowest score using dynamic programming techniques. We use

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

the set {(1, 1), (1, 2), (2, 1)} as possible step sizes, which
allows for tempo differences up to a factor of 2. We then
use the normalized alignment path score as a match score for
the reference sequence. Comparing the cross-correlation and
subsequence DTW approaches will indicate how important it
is to handle local tempo differences.

Figure 5 shows the comparison between the cross-
correlation and subsequence DTW approaches. Since the
amount of temporal context described by each hashprint
can affect its ability to absorb timing mismatches, we also
show this comparison across a range of context values w.
There are three things to notice about Figure 5. First, cross
correlation performs better than subsequence DTW. Across a
wide range of context values, the cross correlation approach
shows consistently better results than subsequence DTW. This
indicates that the extra degrees of freedom offered by the
DTW algorithm are not necessary or helpful, and may even
hurt system performance. Second, more context helps up to
a certain point. For both matching algorithms, using more
context frames (up to 20) improves results. Third, context
helps cross-correlation more than it helps subsequence DTW.
Note that the MRR scores using subsequence DTW range from
.75 to .78, while the MRR scores using cross correlation range
from .76 to .81. With the subsequence DTW approach, tempo
mismatches can be handled by the matching algorithm even
if the context of each hashprint is small. But with the cross
correlation approach, tempo mismatches cannot be handled
by the matching algorithm. In this case, the only factor that
can mitigate the effect of tempo mismatch is the amount of
temporal context described by each hashprint, so context has
a proportionally larger impact on system performance.

In summary, the tempo mismatches are small enough
that across a short 6-second segment, we can approximately
assume that the tempos are equal. Furthermore, increasing
the amount of context in the hashprint representation allows
individual hashprints to absorb slight misalignments that result
from tempo mismatch. Of course, these conclusions can only
generalize to the extent that these 10 musical artists are
representative of other live song identification scenarios. For
this data set, however, the conclusion is clear: cross correlation
wins.

B. Effect of Context & Delta
The second question of interest to us is, “How do context

and delta separation affect system performance?” To answer
this question, we ran experiments across a range of context
values w and delta separation values T . For these experiments,
we used cross correlation matching with a downsampling rate
of 1 (i.e. no downsampling).

Figure 6 shows the effect of context and delta separation on
system performance. We see that using more context helps up
to a certain point, as discussed previously. We also see that
using greater delta separation (up to 992 ms) also improves
results. For very small values of T , the delta spectro–temporal
feature is the difference between two spectro–temporal fea-
tures that are located close together in time and thus highly
correlated. Because the difference between two highly cor-
related features is small, the variance of the resulting delta

Fig. 6. Effect of hashprint context window length and delta separation value
on system performance.

Fig. 7. Effect of the number of hashprint bits on system performance.

features will be small, resulting in bits that are not robust.
For large values of T , the delta spectro–temporal feature
will be the difference between two independent features,
which effectively yields double the variance. As T increases,
however, we also effectively lose T seconds of data from
our 6 second query. For example, when T = 2 seconds, we
effectively have 4 seconds of time-varying data. Thus, there
is a tradeoff in selecting the optimal delta separation value
T . We can see from Figure 6 that T = 992 ms and w = 20
context frames yield the best results. These settings are used
in all of the reported results in this paper, unless otherwise
noted.

C. Effect of Number of Bits

The third question of interest to us is, “How does the number
of hashprint bits affect the results?” Figure 7 shows the effect
of varying the number of bits in the hashprint representation.
For these experiments, we used a cross correlation matching
with a downsampling factor of 1. As we increase the number
of bits in the hashprint representation, the system performance
improves in an asymptotic fashion. By the time we reach 64
bits, the system performance has largely leveled off. We would
expect only marginal improvement in performance if we went
beyond 64 bits. This is quite convenient for our system design,
since going beyond 64 bits would require twice the storage and
computation on a 64-bit machine. We use a 64-bit hashprint
representation for all other results reported in this paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

D. Effect of Learning

The fourth question of interest to us is, “How much does the
unsupervised learning actually help?” It could be the case, for
example, that the benefit in our system performance simply
comes from using more context frames, rather than from
learning the filter coefficients. In order to answer this question,
we repeated the ‘HP(1)’ experiment in Figure 3 with one major
change: instead of using the learned filters, we use filters with
random coefficients. Using random coefficients corresponds
to a locality senstive hashing (LSH) approach, which was
described in section III-C. When we ran this experiment, the
MRR of the system falls from .81 (‘HP(1)’) to .65 (LSH-based
approach).

There are two things to note about this result. First, using
random coefficients still performs quite well. This LSH-based
approach (MRR .65) performs almost as well as the previous
state-of-the-art system proposed by Rafii et al. [25] (MRR .68).
So, even if the unsupervised learning was omitted, the resulting
system would still perform relatively well. The effectiveness
of the LSH technique has been validated by its widespread
adoption in practice. Second, the learning helps a lot. The
structural elements of the hashprint approach (e.g. spectro–
temporal filters, amount of context, delta separation, etc)
yields a performance that is on par with the previous state-
of-the-art, but the unsupervised learning of filter coefficients
provides substantial improvement beyond previous results. The
unsupervised learning does indeed help a lot.

E. Effect of Downsampling & Rescoring

The fifth question of interest to us is, “How do downsam-
pling and rescoring affect system performance?” The purpose
of introducing downsampling and rescoring is to reduce the
search latency, so we must consider both the accuracy and the
efficiency of the system. Figure 8 shows the effect of down-
sampling and rescoring on system accuracy. The five groups
of bars show the MRR of the system as the downsampling
rate increases from 1 to 5. Each pair of bars compares the
performance with and without rescoring. Table III shows the
effect of downsampling and rescoring on system efficiency. To
quantify the efficiency of the system, we measure the average
amount of time it takes to process each 6 second query. We
ran the experiments on a single core of a 2.2 GHz Intel Xeon
processor. The average amount of time required to compute
the CQT and search the database is shown in columns 3 and
4, and the total average runtime is shown in column 5.

There are three things to notice about the results in Figure 8
and Table III. First, downsampling provides a tradeoff between
accuracy and efficiency. As we increase the downsampling
rate, the MRR gets worse (Figure 8) and the average runtime
gets better (Table III). We can choose a downsampling rate to
achieve the desired tradeoff. Second, rescoring substantially
improves MRR with low impact on runtime. Comparing the
two bars in each group in Figure 8, we can see that rescoring
helps to recoup a lot of the MRR that is lost as a result
of downsampling. At the same time, this rescoring has very
little impact on average runtime. Comparing the runtime of
systems with and without rescoring in Table III, for example,

Fig. 8. Effect of downsampling and rescoring on system performance.

Downsample Rescoring CQT Search Total
1 no .51 2.87 3.43
2 no .50 .68 1.23
3 no .49 .31 .85
4 no .52 .18 .74
5 no .49 .12 .66
1 yes .53 2.90 3.48
2 yes .50 .72 1.26
3 yes .51 .35 .90
4 yes .50 .21 .76
5 yes .49 .15 .69

TABLE III
EFFECT OF DOWNSAMPLING AND RESCORING ON AVERAGE PROCESSING
TIME PER QUERY. COLUMNS 3 AND 4 SHOW AVERAGE TIME IN SECONDS

REQUIRED TO COMPUTE THE CQT AND PERFORM THE SEARCH,
RESPECTIVELY. COLUMN 5 SHOWS THE AVERAGE TOTAL PROCESSING

TIME PER QUERY. EXPERIMENTS WERE RUN ON A SINGLE CORE OF A 2.2
GHZ INTEL XEON PROCESSOR.

we see that rescoring only adds 2 to 5 ms to the total runtime.
Third, we can substantially reduce the runtime with only a
modest sacrifice to MRR. With a downsampling rate of 3 with
rescoring, for example, we can reduce the runtime from 3.48
seconds to 0.90 seconds while only decreasing the MRR from
.81 to .79. This is the ‘HP(3)’ system shown at the far right
of Figure 3. Note that the system proposed by Rafii et al. [25]
had a (self-reported) average runtime of 10 seconds per query,
so our proposed system may offer substantial savings in search
computation.

One other important factor to mention is the cost of com-
puting the CQT. We can see from Table III that the CQT is a
fixed cost to the system, regardless of the downsampling rate.
Downsampling can reduce the runtime of the search algorithm,
but it can only asymptotically reduce the total runtime down
to this fixed cost. In a real commercial system, the CQT could
be computed on the query in a streaming manner, so that the
latency experienced by the user effectively depends only on the
search algorithm. Such an implementation, however, is beyond
the scope of this work.

F. Effect of Database Size

The sixth question of interest to us is, “How does the
database size affect system performance?” Since the proba-
bility of randomly selecting a true match from a collection of
N possible songs is 1

N , we expect the results to get worse as
N increases. We would like to quantify how much the results
change as a function of the artist’s database size. In order to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 9. Effect of database size on system performance.

Fig. 10. Effect of database size on average processing time per query.

answer this question, we ran a set of controlled experiments in
which we artificially fixed the size of the database (measured
by the number of songs). We considered a range of database
sizes that would be realistic for an artist of the given genres.
(Note that a very established musician like Tom Petty has
about 200 songs.) When the fixed database size is less than
the artist’s actual database size, we removed songs from the
database to achieve the desired size. When the fixed database
size is greater than the artist’s actual database size, we padded
the database with randomly selected songs from the other
musical artists in order to achieve the desired size. Since the
songs from other artists may result in a database containing
more variation in style and genre than is typical within the
artist’s own repertoire, these results should be interpreted with
caution. Nonetheless, such an analysis can provide a rough
indicator of how database size would affect results. Figure
9 shows the MRR of the system across different database
sizes and different downsampling rates. Figure 10 shows the
corresponding average runtimes. Note that the database size
here refers to the number of original studio recordings, so
the actual number of pitch-shifted reference sequences in the
database will be nine times greater.

There are three things we can observe about the results
in Figures 9 and 10. First, MRR decreases asymptotically
in the database size. As database size increases beyond 75,
there is only a marginal decline in MRR. For example, with a
downsampling factor of 1, the MRR falls from .89 to .82 as the
database size increases from 10 to 75, but it only falls from .82
to .81 as the database size increases from 75 to 300. Similarly,
with a downsampling factor of 3, the MRR falls from .88 to
.80 as the database size increases from 10 to 75, but it only
falls from .80 to .78 as the database size increases from 75
to 300. Second, the runtime increases linearly in the database
size. (Note that the database sizes shown in the figures are not
spaced linearly.) Since the cross-correlation search is doing
a linear scan across the database, the search time will be
proportional to the size of the database. The total runtime thus
consists of fixed costs (such as computing the CQT) and a
variable cost that is proportional to the database size. Though
actual runtime will of course depend on memory usage and
CPU load, a rough guideline is that there are about .6 seconds
of fixed costs and each hashprint sequence takes about 4 ms
to score (without downsampling). Third, the downsampling
rate can be selected to stay below a maximum acceptable
runtime latency. One advantage of downsampling is that we
can control the tradeoff between accuracy and efficiency in
an artist-specific way. For artists with a small database —
where latency is not an issue — we can use a downsampling
rate of 1 to maximize the reliability of the results. For artists
with a large database — where latency will be an issue —
we can use a higher downsampling rate to guarantee that the
average latency stays below an acceptable threshold. In our
experiments, for example, we can guarantee an average MRR
of .75 and average runtime latency of 1.3 seconds for databases
up to size 200, and we can guarantee an average MRR of .74
and average runtime latency of 1.6 seconds for databases up
to size 300. The downsampling rate can thus be tailored to
each artist to achieve the desired tradeoff between accuracy
and efficiency.

G. Filters

The seventh question of interest to us is, “What do the
learned filters look like?” This analysis can help us gain a
deeper intuition about what type of information the hashprints
are capturing. Figures 11 and 12 show the top 32 learned filters
for two different musical artists, Big K.R.I.T. and Taylor Swift.
The filters are arranged first from left to right, and then from
top to bottom. The filters cover the frequency range C3 (130.81
Hz) to C8 (4186.01 Hz) and span .372 seconds.10 There are
four things to notice about the filters in these figures.

First, the filters contain both temporal and spectral mod-
ulations. Some filters primarily capture modulations along
the temporal dimension, such as filters 3, 4, and 5 in figure
11 that contain vertical bands. Some filters primarily capture
modulations along the spectral dimension, such as the filters on
row 3 that contain many horizontal bands. Other filters capture

10Note that here we use a slightly larger amount of context (w = 30)
to make the filters easier to visualize. We can see from figure 5 that using
between 20 and 40 context frames yields good performance.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 11. Top 32 learned filters for Big KRIT. The filters are arranged first
from left to right, and then from top to bottom. Each filter spans .372 seconds
and covers a frequency range from C3 to C8.

Fig. 12. Top 32 learned filters for Taylor Swift.

both temporal and spectral modulations, such as filters 15 and
16 in figure 11, which seem to capture primarily temporal
modulations in the higher frequencies and primarily spectral
modulations in the lower frequencies. The important thing to
point out is that both types of modulations are important: if
the hashprint representation were constrained to describing
only a single audio frame, for example, it would be unable
to characterize an important aspect of the signal.

Second, the filters capture both broad and fine spectral
detail. Some filters describe the broad shape of the spectrum,
such as filters 2 and 6 in figure 11. Other filters capture fine
spectral details such as filters 22, 23, and 24 in the same figure.
Often feature representations like chroma or MFCCs tend to
focus on either fine spectral structure or broad spectral shape,
but here we see that the hashprints are able to capture both
types of information in a simple, unified framework.

Third, there is a progression from lower modulation fre-
quencies to higher modulation frequencies. When we look at
filters 3, 4, 5, and 8 on the first row of figure 11, we can
see a progression from lower temporal modulation frequencies
to higher and higher modulation frequencies. In the same
figure, we see a similar progression in filters 2, 6, 9, 10, and
11 for spectral modulation frequencies. It appears that lower
modulation frequencies are more useful in the sense that they
yield features with greater variance.

Fourth, the filters are artist-specific. When we compare the
learned filters for Big K.R.I.T. (figure 11)with the learned
filters for Taylor Swift (figure 12), we see that the first four
filters are quite similar. After these first four, however, the
filters begin diverging and reflecting the unique characteristics
of each artist’s music. We notice, for example, that many more
of the filters for Big K.R.I.T. emphasize temporal modulations,
perhaps a reflection of the fact that rap music tends to be more
percussion and rhythm-based. In contrast, the filters for Taylor
Swift seem to primarily capture pitch-related information,
which perhaps reflects the fact that country and pop music

tends to be more harmony-based. The fact that the learned
filters diverge so quickly is also an argument for using a
representation that is adaptive to each artist. For a known-
artist search, it may be advantageous to use a highly adaptive
representation that is specific to each artist, rather than using
a single unified representation based on a huge training set.

VI. CONCLUSION

We have introduced a known-artist live song identification
system that is characterized by two main components: (1) a
binary representation of audio called hashprints, which are
derived from a set of spectro–temporal filters that are learned
in an unsupervised, artist-specific manner, and (2) a cross
correlation-based matching algorithm that can be easily tuned
to achieve a desired runtime latency. On the Gracenote live
song identification benchmark, the proposed system improves
the mean reciprocal rank of the previous state-of-the-art from
.68 to .79, while simultaneously reducing the runtime latency
from 10 seconds down to 0.9 seconds. We conduct extensive
analyses to understand the capabilities and limitations of the
hashprint representation as well as the search mechanism.
One main underlying theme of this work is approaching
similarity search in a highly flexible and adaptive way: both
the audio representation and matching algorithm are artist-
specific, adapted to the specific characteristics of the artist’s
music and database size.

The proposed system has two underlying assumptions:
it assumes that a database of concert event information is
available, and it assumes that the query is a live performance
of a song on a recorded studio album. One area of future work
is to gracefully handle situations where these assumptions are
violated. For example, when the query is a novel song that
does not exist in the database, it would be better to switch
to a different type of retrieval, such as returning a list of
songs that are similar in some musically meaningful way.
Another area of future work includes expanding the database
to include a greater number and variety of artists, styles,
and genres. Having an expanded data set would enable us
to study the relationship between the specificity of learning
and performance. For example, we could gain insight on this
topic by comparing the performance when filters are learned
per artist, per genre, and across a diverse musical database.

ACKNOWLEDGMENT

We would like to thank Zafar Rafii and Markus Cremer at
Gracenote for generously providing the data set, and Brian
Pardo for helpful discussions. Thomas Prätzlich has been
supported by the German Research Foundation (DFG MU
2686/7-1). The International Audio Laboratories Erlangen
are a joint institution of the Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU) and Fraunhofer Institut für Integri-
erte Schaltungen IIS.

REFERENCES

[1] M. Müller, Fundamentals of Music Processing. Springer, 2015.
[2] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,”

in Proc. International Society for Music Information Retrieval (ISMIR),
2002, pp. 107–115.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[3] J. Haitsma, T. Kalker, and J. Oostveen, “Robust audio hashing for
content identification,” in International Workshop on Content-Based
Multimedia Indexing, vol. 4, 2001, pp. 117–124.

[4] S. Baluja and M. Covell, “Audio fingerprinting: Combining computer
vision & data stream processing,” in Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2007, pp.
213–216.

[5] ——, “Waveprint: Efficient wavelet-based audio fingerprinting,” Pattern
Recognition, vol. 41, no. 11, pp. 3467–3480, May 2008.

[6] X. Anguera, A. Garzon, and T. Adamek, “MASK: Robust local features
for audio fingerprinting,” in Proc. IEEE International Conference on
Multimedia and Expo (ICME), 2012, pp. 455–460.

[7] E. Younessian, X. Anguera, T. Adamek, N. Oliver, and D. Marimon,
“Telefonica research at TRECVID 2010 content-based copy detection,”
in Proc. of TRECVID, 2010.

[8] B. Coover and J. Han, “A power mask based audio fingerprint,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014, pp. 1394–1398.

[9] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel, A. Smeaton,
W. Kraaij, and G. Quénot, “TRECVID 2011 — An Overview of the
Goals, Tasks, Data, Evaluation Mechanisms and Metrics,” in Proc. of
TRECVID, 2011.

[10] J. Downie, M. Bay, A. Ehmann, and M. Jones, “Audio cover song identi-
fication: MIREX 2006-2007 results and analyses,” in Proc. International
Society for Music Information Retrieval (ISMIR), 2008, pp. 468–474.

[11] S. Ravuri and D. Ellis, “Cover song detection: from high scores
to general classification,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2010, pp. 65–68.

[12] D. Ellis and G. Poliner, “Identifying ‘cover songs’ with chroma features
and dynamic programming beat tracking,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007,
pp. 1429–1432.

[13] J. Serra, X. Serra, and R. Andrzejak, “Cross recurrence quantification
for cover song identification,” New Journal of Physics, vol. 11, no. 9,
p. 093017, 2009.

[14] J. Serra, E. Gómez, and P. Herrera, “Audio cover song identification
and similarity: background, approaches, evaluation, and beyond,” in
Advances in Music Information Retrieval, 2010, pp. 307–332.

[15] T. Bertin-Mahieux, D. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Proc. International Society for Music Information
Retrieval (ISMIR), 2011, pp. 591–596.

[16] T. Bertin-Mahieux and D. Ellis, “Large-scale cover song recognition
using the 2D fourier transform magnitude,” in Proc. International
Society for Music Information Retrieval (ISMIR), 2012, pp. 241–246.

[17] E. J. Humphrey, O. Nieto, and J. P. Bello, “Data driven and discrim-
inative projections for large-scale cover song identification,” in Proc.
International Society for Music Information Retrieval (ISMIR), 2013,
pp. 149–154.

[18] M. Khadkevich and M. Omologo, “Large-scale cover song identification
using chord profiles,” in Proc. International Society for Music Informa-
tion Retrieval (ISMIR), 2013, pp. 233–238.

[19] J. Osmalsky, J.-J. Embrechts, P. Foster, and S. Dixon, “Combining
features for cover song identification,” in Proc. International Society
for Music Information Retrieval (ISMIR), 2015, pp. 462–468.

[20] T. Bertin-Mahieux and D. P. Ellis, “Large-scale cover song recognition
using hashed chroma landmarks,” in IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), 2011, pp. 117–
120.

[21] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimum distances in
high-dimensional musical spaces,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 16, no. 5, pp. 1015–1028, 2008.

[22] P. Grosche and M. Müller, “Toward characteristic audio shingles for
efficient cross-version music retrieval,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012,
pp. 473–476.

[23] F. Kurth and M. Müller, “Efficient index-based audio matching,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 16, no. 2,
pp. 382–395, 2008.

[24] M. Müller, F. Kurth, and M. Clausen, “Audio matching via chroma-based
statistical features,” in Proc. International Society for Music Information
Retrieval (ISMIR), 2005, pp. 288–295.

[25] Z. Rafii, B. Coover, and J. Han, “An audio fingerprinting system for live
version identification using image processing techniques,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014, pp. 644–648.

[26] T. Tsai, T. Prätzlich, and M. Müller, “Known-artist live song ID: A
hashprint approach,” in Proc. International Society for Music Informa-
tion Retrieval (ISMIR), 2016, to appear.

[27] C. Raffel and D. Ellis, “Large-scale content-based matching of midi
and audio files,” in Proc. International Society for Music Information
Retrieval (ISMIR), 2015, pp. 234–240.

[28] C. Schörkhuber and A. Klapuri, “Constant-q transform toolbox for music
processing,” in Sound and Music Computing Conference, 2010, pp. 3–
64.

[29] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music iden-
tification,” in Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2005, pp. 597–604.

[30] S. Haykin, Adaptive Filter Theory. Prentice Hall, 1996.
[31] S. Kim and C. D. Yoo, “Boosted binary audio fingerprint based on

spectral subband moments,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. 241–244.

[32] S. Fenet, Y. Grenier, and G. Richard, “An extended audio fingerprint
method with capabilities for similar music detection,” in Proc. Inter-
national Society for Music Information Retrieval (ISMIR), 2013, pp.
569–574.

[33] A. Wang, “An industrial-strength audio search algorithm,” in Proc.
International Society for Music Information Retrieval (ISMIR), 2003,
pp. 7–13.

[34] J. George and A. Jhunjhunwala, “Scalable and robust audio finger-
printing method tolerable to time-stretching,” in IEEE International
Conference on Digital Signal Processing (DSP), 2015, pp. 436–440.

[35] S. Fenet, G. Richard, and Y. Grenier, “A scalable audio fingerprint
method with robustness to pitch-shifting,” in Proc. International Society
for Music Information Retrieval (ISMIR), 2011, pp. 121–126.

[36] R. Sonnleitner and G. Widmer, “Quad-based audio fingerprinting robust
to time and frequency scaling,” in Proc. International Conference on
Digital Audio Effects, 2014, pp. 173–180.

[37] Y. Shi, W. Zhang, and J. Liu, “Robust audio fingerprinting based on
local spectral luminance maxima scheme,” in Proc. Interspeech, 2011,
pp. 2485–2488.

[38] R. Sonnleitner and G. Widmer, “Robust quad-based audio fingerprint-
ing,” IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 24, no. 3, pp. 409–421, 2016.

[39] S. Sukittanon and L. E. Atlas, “Modulation frequency features for audio
fingerprinting,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2002, pp. 1773–1776.

[40] M. Malekesmaeili and R. K. Ward, “A local fingerprinting approach for
audio copy detection,” Signal Processing, vol. 98, pp. 308–321, 2014.

[41] E. Allamanche, J. Herre, O. Hellmuth, B. Fröba, T. Kastner, and M. Cre-
mer, “Content-based identification of audio material using MPEG-7 low
level description,” in Proc. International Society for Music Information
Retrieval (ISMIR), 2001.

[42] J. Herre, E. Allamanche, and O. Hellmuth, “Robust matching of audio
signals using spectral flatness features,” in IEEE Workshop on the
Applications of Signal Processing to Audio and Acoustics (WASPAA),
New Platz, New York, USA, Oct. 2001, pp. 127–130.

[43] J. S. Seo, M. Jin, S. Lee, D. Jang, S. Lee, and C. D. Yoo, “Audio
fingerprinting based on normalized spectral subband centroids,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2005, pp. 213–216.

[44] ——, “Audio fingerprinting based on normalized spectral subband
moments,” IEEE Signal Processing Letters, vol. 13, no. 4, pp. 209–212,
2006.

[45] D. Jang, C. D. Yoo, S. Lee, S. Kim, and T. Kalker, “Pairwise boosted
audio fingerprint,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 4, pp.
995–1004, 2009.

[46] T. Tsai and A. Stolcke, “Robust and efficient multiple alignment of
unsynchronized meeting recordings,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 5, pp. 833–845, 2016.

[47] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[48] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in
Neural Information Processing Systems (NIPS), 2009, pp. 1753–1760.

[49] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. Annual Sym-
posium on Computational geometry, 2004, pp. 253–262.

[50] M. Norouzi, D. Blei, and R. Salakhutdinov, “Hamming distance metric
learning,” in Advances in neural information processing systems (NIPS),
2012, pp. 1061–1069.

[51] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International
Journal of Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[52] V. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for
compact binary codes learning,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 2475–2483.

[53] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and G. Hinton,
“Binary coding of speech spectrograms using a deep auto-encoder,” in
Proc. Interspeech, 2010, pp. 1692–1695.

[54] H. Schreiber and M. Müller, “Accelerating index-based audio identifica-
tion,” IEEE Transactions on Multimedia, vol. 16, no. 6, pp. 1654–1664,
2014.

[55] N. Hu, R. Dannenberg, and G. Tzanetakis, “Polyphonic audio matching
and alignment for music retrieval,” in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), 2003.

[56] H. Nagano, R. Mukai, T. Kurozumi, and K. Kashino, “A fast audio
search method based on skipping irrelevant signals by similarity upper-
bound calculation,” in Proc. IEEE Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2015, pp. 2324–2328.

[57] D. Ellis and C. Cotton, “The 2007 labrosa cover song detection system,”
in Music Information Retrieval Evaluation Exchange (MIREX), 2007.

[58] J. Serra and E. Gomez, “A cover song identification system based
on sequences of tonal descriptors,” in Music Information Retrieval
Evaluation Exchange (MIREX), 2007.

[59] J. Six and M. Leman, “Panako: a scalable acoustic fingerprinting system
handling time-scale and pitch modification,” in Proc. International
Society for Music Information Retrieval (ISMIR), 2014.

[60] E. Voorhees, “The TREC-8 question answering track report,” in Proc.
8th Text Retrieval Conference, 1999, pp. 77–82.

[61] D. Ellis. (2015) Robust landmark-based audio fingerprinting. [Online].
Available: http://labrosa.ee.columbia.edu/matlab/fingerprint/

TJ Tsai completed his BS and MS in electrical
engineering at Stanford University in 2006 and 2007.
From 2008 to 2010, he worked at SoundHound,
a startup that allows users to search for music by
singing, humming, or playing a recorded track. He
completed his Ph.D. at the University of California
Berkeley in May 2016, and is now an assistant
professor of engineering at Harvey Mudd College.

Thomas Prätzlich (S’13) received his B.Sc. (2008)
in bioinformatics and his M.Sc. in computer science
from Saarland University, Saarbrücken, Germany.
He completed his PhD in December 2016 in the
Semantic Audio Processing Group headed by Prof.
Meinard Müller at the International Audio Labora-
tories Erlangen, which are a joint institution of the
Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Fraunhofer-Institut für Integrierte
Schaltungen IIS. He has been working as a re-
searcher in the field of music information retrieval

since 2012. His research interests are music segmentation, synchronization,
and source separation.

Meinard Müller Meinard Müller studied mathe-
matics (Diplom) and computer science (Ph.D.) at
the University of Bonn, Germany. In 2002/2003,
he conducted postdoctoral research in combinatorics
at the Mathematical Department of Keio Univer-
sity, Japan. In 2007, he finished his Habilitation at
Bonn University in the field of multimedia retrieval.
From 2007 to 2012, he was a member of the
Saarland University and the Max-Planck Institut für
Informatik leading the research group Multimedia
Information Retrieval and Music Processing within

the Cluster of Excellence on Multimodal Computing and Interaction. Since
September 2012, Meinard Müller holds a professorship for Semantic Audio
Processing at the International Audio Laboratories Erlangen, which is a joint
institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
and the Fraunhofer-Institut für Integrierte Schaltungen IIS. His recent research
interests include music processing, music information retrieval, audio signal
processing, multimedia retrieval, and motion processing. Meinard Müller has
been a member of the IEEE Audio and Acoustic Signal Processing Technical
Committee from 2010 to 2015 and a member of the Board of Directors of the
International Society for Music Information Retrieval (ISMIR) since 2009.
He has co-authored more than 100 peer-reviewed scientific papers, wrote a
monograph titled Information Retrieval for Music and Motion (Springer, 2007)
as well as a textbook titled Fundamentals of Music Processing (Springer, 2015,
www.music-processing.de).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2669864

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

