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ABSTRACT

This paper studies the problem of identifying piano sheet
music based on a cell phone image of all or part of a phys-
ical page. We re-examine current best practices for large-
scale sheet music retrieval through an economics perspec-
tive. In our analogy, the runtime search is like a consumer
shopping in a store. The items on the shelves correspond
to fingerprints, and purchasing an item corresponds to do-
ing a fingerprint lookup in the database. From this per-
spective, we show that previous approaches are extremely
inefficient marketplaces in which the consumer has very
few choices and adopts an irrational buying strategy. The
main contribution of this work is to propose a novel finger-
printing scheme called marketplace fingerprinting. This
approach redesigns the system to be an efficient market-
place in which the consumer has many options and adopts
a rational buying strategy that explicitly considers the cost
and expected utility of each item. We also show that de-
ciding which fingerprints to include in the database poses
a type of minimax problem in which the store and the con-
sumer have competing interests. On experiments using all
solo piano sheet music images in IMSLP as a searchable
database, we show that marketplace fingerprinting sub-
stantially outperforms previous approaches and achieves
a mean reciprocal rank of 0.905 with sub-second average
runtime.

1. INTRODUCTION

This paper tackles the problem of identifying piano sheet
music based on a cell phone picture of all or part of a phys-
ical page. This is the camera-based sheet music identifi-
cation task. Such a system could be used to conveniently
retrieve Youtube videos of relevant performances, compare
different scores for a particular passage of music, or – more
generally – explore representations of sheet music that are
useful for alignment and retrieval.

Previous work on retrieval tasks involving sheet music
fall into three groups. The first group of related works
study audio–sheet alignment and retrieval. The earliest
works used Optical Music Recognition (OMR) systems to
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convert sheet music to a symbolic format like MIDI, ex-
tracted chroma features from both MIDI and audio, and
then performed alignment or retrieval using dynamic time
warping (DTW). This approach has been used to synchro-
nize audio and sheet music [1–4] and perform audio–sheet
retrieval [5, 6]. More recent works have explored the use
of convolutional neural networks (CNNs) to project both
sheet music and audio into an embedding space where
similarity can be computed directly. This approach has
been applied to various forms of audio–sheet music align-
ment [7–11] and audio–sheet retrieval [7, 12, 13]. The sec-
ond group of related works study symbolic–sheet retrieval.
Several recent works studying MIDI-sheet retrieval have
used the bootleg score feature representation [14], which
encodes the positions of noteheads relative to staff lines.
This representation has been used for MIDI–sheet passage
retrieval [14, 15] and to find matches between the Lakh
MIDI dataset and IMSLP sheet music [16, 17]. Other ap-
proaches find matches with symbolic queries by perform-
ing OMR or object recognition on the sheet music, and
then doing an n-gram lookup [18,19], string matching [20],
or keyword spotting [21]. The third group of related works
— and the works that are most directly relevant to our
present study — explore sheet–sheet retrieval. Hajic et
al. [22] use OMR to convert sheet music to MIDI and then
use DTW on the pitch sequences. Waloschek et al. [23] use
a CNN to project entire measures into an embedding space
to align different sheet music editions of the same piece.
Yang and Tsai [24] propose a dynamic n-gram fingerprint
derived from bootleg score features to identify sheet music
based on cell phone images of physical pages.

This paper re-examines current practices for large-scale
sheet–sheet retrieval from an economics perspective. This
perspective makes clear what the weaknesses of current ap-
proaches are and suggests ways to improve them. We will
focus our analysis on the dynamic n-gram approach [24],
since it is the largest-scale study (using all solo piano sheet
music images in IMSLP) and achieves robust sub-second
retrieval (0.85 MRR). The dynamic n-gram approach has
three steps: (1) it extracts a sequence of bootleg score
features x1, x2, . . . , xL from the query image, (2) it con-
structs either a 1-gram (xi), 2-gram (xi, xi+1), 3-gram
(xi, xi+1, xi+2), or 4-gram (xi, xi+1, xi+2, xi+3) finger-
print at each offset i = 1, 2, . . . , L, where the size of the
n-gram at offset i is selected at runtime to ensure that the
number of fingerprint matches in the database is below a
certain threshold, and (3) the n-gram fingerprints are used
with an inverted file index to identify the database item



Figure 1. Overview of the marketplace fingerprinting ap-
proach. The upper half describes the offline process of
constructing the database, and the lower half describes the
online process of performing a real-time search.

containing the most fingerprint matches.
Consider the following analogy. Imagine that the run-

time search is like a consumer shopping in a store. Ev-
ery offset i = 1, 2, . . . , L in the bootleg score sequence
is like an aisle in the store. The 1-gram, 2-gram, 3-gram,
and 4-gram fingerprints are like items on the shelves. In
the dynamic n-gram approach, the store has exactly four
items on every aisle, and the consumer always purchases
the most expensive item in each aisle that is below a max-
imum acceptable price. From an economics perspective,
this setup is horrible for the consumer, and the consumer’s
purchasing strategy is irrational.

The main contribution of this paper is to propose a novel
fingerprinting scheme called marketplace fingerprinting.
Marketplace fingerprinting is the result of redesigning the
system above using principles of economics to produce a
more efficient marketplace. One of the key principles in
this approach is that more options and choices are good
for the consumer. We generalize the notion of an n-gram
in order to produce a much larger set of n-gram types,
which corresponds to offering many more items in each
aisle. Furthermore, we adopt a much more rational pur-
chasing strategy in which the consumer explicitly consid-
ers the cost and the expected utility of each item, purchases
the items with the highest utility-to-cost ratio, and is al-
lowed to purchase multiple items in each aisle as long as
they stay under budget. We also show that the database
design problem (i.e. which n-gram fingerprints to include
in the database) presents a type of minimax problem in
which the store and the consumer have competing inter-
ests. On experiments involving all solo piano sheet music
images in IMSLP, we show that the marketplace finger-
printing method substantially improves retrieval accuracy
compared to the dynamic n-gram method. 1

2. SYSTEM DESCRIPTION

Figure 1 shows an overview of our proposed approach. We
will describe the system in three parts: computing the fin-
gerprint representation (Section 2.1), creating the database

1 Code can be found at https://github.com/HMC-MIR/
ImprovedSheetID.

Figure 2. Description of the generalized n-gram finger-
print representation. The sheet music is first converted to
a bootleg score, each column of the bootleg score is rep-
resented as a 64-bit integer, and n-grams are constructed
from various groupings of integers.

(Section 2.2), and searching the database (Section 2.3).
The bootleg score representation is adopted from previous
work, but the generalized n-gram, database construction,
and search mechanism are novel contributions.

2.1 Fingerprint Representation

Figure 2 shows how n-gram fingerprints are computed.
This process is described in the next two paragraphs.

The first step is to extract bootleg score features. The
bootleg score is a mid-level feature representation that en-
codes the positions of filled noteheads relative to staff
lines in piano sheet music [14]. The bootleg score it-
self is a 62 × N binary matrix, where 62 indicates the
total number of distinct staff line positions in both the
left and right hand staves and N indicates the number of
grouped note events in the sheet music (e.g. a chord con-
taining four notes played simultaneously would constitute
a single grouped note event). Note that this representation
throws away a significant amount of information such as
key signature, time signature, accidentals, note duration,
octave markings, clef changes, and non-filled noteheads.
Nonetheless, it has been successfully used in several appli-
cations involving sheet music, including sheet music iden-
tification [16, 24], sheet–MIDI retrieval [14, 15, 17], and
sheet–audio alignment [25,26]. We represent each column
(containing 62 bits) as a 64-bit integer, so that the bootleg
score is encoded as a sequence of integers x1, x2, . . . , xN .

The second step is to construct generalized n-grams.
The concept of n-grams comes from linguistics [27], where
the frequency of word sequences in a large corpus was
historically used for language modeling. Many previous
works have likewise used n-grams for language modeling
with music data (e.g. [28, 29]). Here, we use a general-
ization of n-grams that is specifically useful for indexing
and retrieval. When constructing generalized n-grams at
offset i for a bootleg score sequence x1, x2, . . . , xN , we



consider any combination of n elements that satisfies two
conditions: (1) the leftmost element must be xi, and (2) the
elements must be selected from a fixed context window of
length C. For example, when C = 4 and we consider
up to 3-grams, there is one 1-gram {(xi)}, three 2-grams
{(xi, xi+1), (xi, xi+2), (xi, xi+3)}, and three 3-grams
{(xi, xi+1, xi+2), (xi, xi+1, xi+3), (xi, xi+2, xi+3)}, re-
sulting in a total of 7 generalized n-grams. In our exper-
iments, we consider up to 3-grams with C = 6, which
results in a total of T = 16 different generalized n-gram
types at each offset i. We will denote the generalized n-
grams at offset i as yi1, yi2, . . . , yiT .

2.2 Database Construction

If we had an infinite amount of RAM available, the
database construction problem would be trivial: we would
simply include all of the generalized n-grams in the
database. However, because the IMSLP dataset is large
and we have many different types of n-grams, the total
amount of memory required to store everything in the
database quickly becomes exorbitant. This forces us to
be strategic in choosing which n-grams to include in the
database and which to exclude.

The database is simply a reverse index in which the key
is the n-gram fingerprint and the value is a list of all in-
stances in the IMSLP dataset where the n-gram occurs.
This list consists of (PDF, offset) tuples that specify the
IMSLP PDF and bootleg score offset where the fingerprint
occurs. Note that the n-gram type and n-gram value must
both match in order to be included in the reverse index
(i.e. a (xi, xi+1) 2-gram and (xi, xi+2) 2-gram will never
collide).

We approach this problem from the perspective of a
store manager who has a limited amount of shelf space and
wants to fill the shelves with products that maximize some
utility function. There are two different types of resources
in this scenario. The first resource is shelf space, which in
our case corresponds to the amount of RAM available. In
our experiments, we work with a machine that has 128 GB
of RAM. The second resource of interest is the utility func-
tion. Our utility function is the expected number of match
points that will be added to the true matching PDF at run-
time. Consider a single n-gram fingerprint yij at offset i in
a query. If yij is not in the database or if the bootleg score
representation has errors (e.g. it fails to detect a notehead
in the sheet music), the true matching item in the database
will accumulate 0 match points. On the other hand, if yij is
included in the database and the bootleg score computation
is correct, the true matching item in the database will ac-
cumulate 1 match point. Therefore, the expected (added)
utility for including yij in the database is the probability
that its constituent bootleg score representation is correct.
We estimated this probability of correctness as a fixed con-
stant for each of the 16 generalized n-gram types based on
the training data, as shown in Figure 3. Unsurprisingly, the
1-gram has the highest probability of correctness, and the
3-grams had the lowest (4-grams were even lower). Using
this approach, the total utility of an n-gram fingerprint yij

Figure 3. Probability of correctness for various general-
ized n-gram types, as estimated on training data. Each bar
indicates the fraction of n-grams of that type in the train-
ing queries whose underlying bootleg score representation
matched the database.

is U(yij) = N(yij)Pcorrect(j), where N(yij) indicates
the total number of times the fingerprint occurs in the IM-
SLP data and where Pcorrect(j) indicates the probability
that the underlying bootleg score representation is correct
(as shown in Figure 3).

At this point, we could simply sort all of the unique n-
gram fingerprints by their utility (largest to smallest), and
then add them to the database in order until the memory is
used up. However, this ignores the fact that the store man-
ager (i.e. the database construction problem) and the con-
sumer (i.e. the runtime search problem) have competing
interests. Note that the utility function rewards fingerprints
that occur very frequently. 2 For example, the n-gram with
the highest utility is a 1-gram (i.e. single bootleg score col-
umn) with a single notehead present, which occurs more
than a million times in the database. This fingerprint of-
fers the store manager the highest return, but is an awful
proposition for the consumer. From the search perspective,
the primary constraining resource is runtime, not memory.
Given two different n-grams to choose from — one that
occurs 1 million times in the database and one that occurs
once in the database — the latter is far more desirable at
runtime: both offer the possibility of adding 1 match point
to the true matching item in the database, but one requires
processing 1 million matches and the other only requires
processing 1 match. Therefore, the database construction
problem is a type of minimax problem, in which the store
manager wants to offer the most frequently occurring fin-
gerprints but the consumer wants to purchase the least fre-
quently occurring fingerprints.

Based on these considerations, the database is con-
structed in the following way. All of the unique n-gram fin-
gerprints in IMSLP are sorted by their utility value U(yij)
from largest to smallest. We discard any fingerprints that
occur more than γ = 10, 000 times in the database. This
value of γ is set conservatively to ensure that all n-gram
fingerprints that are actually selected at runtime on the

2 Because there is a memory overhead for adding a new entry to the
reverse index, it is possible to fit more matches in memory by adding
frequently occurring fingerprints than by adding lots of rarely occurring
fingerprints.



training data are included in the database. We then add
the remaining fingerprints to the database in order of util-
ity value until the memory has been used up.

At the end of the database construction step, we have
a reverse index that contains a subset of the generalized
n-grams found in the IMSLP data. This subset excludes
extremely common n-grams (that occur > γ times) as well
as extremely rare n-grams (due to memory limits).

2.3 Search

In our analogy, the runtime search is akin to a consumer
shopping in the store. We first process the cell phone im-
age query to compute a sequence of bootleg score features
x̃1, . . . , x̃L, and then construct a set of T = 16 generalized
n-grams yi1, . . . , yiT at each offset i = 1, . . . , L. This set
of (approximately) TL candidate n-grams are the items on
the store shelves that the consumer can purchase. Each off-
set i corresponds to an aisle in the store, and each aisle con-
tains T items. 3 The consumer uses a strategy (described in
the next few paragraphs) to purchase selected candidate n-
grams from each aisle of the store. These selected n-grams
are then used to search the database. The consumer pur-
chasing strategy and the search mechanism are described
in the next three paragraphs.

The consumer adopts a disciplined greedy purchasing
strategy. They first decide on a budget for the whole store
(Btot), divide it by the number of aisles to determine a
budget per aisle (Baisle = Btot/L), and then purchase as
many items in each aisle as they can in order to maximize
utility while staying under their budget for the aisle. Any
unused funds from an aisle carry over to the next aisle.
During a search, the primary constrained resource is run-
time – we do not want a query to take too long to pro-
cess. The runtime is directly correlated with the number
of fingerprint matches in the database that are processed.
The total budget Btot is therefore specified in terms of the
maximum total number of matches we are willing to pro-
cess for each query. Btot is a hyperparameter that can be
selected to achieve a desired runtime. In our experiments,
we set Btot = 65000 in order to achieve ≈ 1 second aver-
age runtime per query on the training set.

How should the consumer decide which items
(i.e. which n-grams) to purchase in each aisle? We as-
sume that the consumer is rational and wants to maxi-
mize their own utility. We define the utility as the ex-
pected number of match points added to the true matching
item in the database, which (as explained in Section 2.2
paragraph 3) is the probability that the underlying boot-
leg score representation is correct. We again approximate
this probability based on the n-gram type and the statistics
on the training data (as shown in Figure 3). The runtime
cost for each item is proportional to the number of fin-
gerprint matches in the database, since processing many
fingerprint matches will require more runtime. Putting
this all together, the consumer tries to maximize utility
by adopting the following strategy: they purchase items

3 The last few aisles may contain less than T items due to a lack of
context.

in each aisle in decreasing order of their utility-to-cost ra-
tio R(yij) = Pcorrect(j)/N(yij) until the budget for the
aisle (Btot/L plus any carryover from the previous aisle)
has been spent. Note that Pcorrect(j) can be determined
based only on the n-gram type and N(yij) can be deter-
mined quickly without needing to actually process the fin-
gerprint matches. This information allows the system to
dynamically adjust which n-grams to select in an informed
and rational manner.

The search is performed using the histogram of off-
sets method [30]. This method provides an efficient way
to search a large database in order to find a sequence of
matching fingerprints aligned in time. For each fingerprint
yij (i.e. the n-gram of type j at offset i in the query) that
is purchased by the consumer, the system processes the
list of fingerprint matches in the database from the reverse
index. Each fingerprint match is specified by two pieces
of information: the PDF and the offset k in the bootleg
score where the fingerprint occurs. Processing a finger-
print match (i.e. a (PDF, k) tuple) means adding the rela-
tive offset k − i to the PDF’s histogram. Note that a se-
quence of matching fingerprints aligned in time will result
in a histogram with a large spike at the true relative offset
(i.e. where the query occurs in the PDF). Therefore, we can
use the maximum bin count in each histogram as a match
score for the PDF. Because IMSLP often contains multi-
ple PDFs for a single piece, we calculate the piece match
score as the maximum score among its constituent PDFs.
Finally, we sort all pieces in the database by their piece
score. The resulting ranked list is the final output of the
system.

2.4 Comparison to Dynamic N-gram

It is instructive to compare the proposed marketplace fin-
gerprinting approach to the dynamic n-gram approach. We
will compare these two along the three axes described
above: the fingerprint representation, the database con-
struction, and the search mechanism.

Fingerprint representation. The dynamic n-gram
approach considers four types of standard n-grams at
each offset i: (xi), (xi, xi+1), (xi, xi+1, xi+2), and
(xi, xi+1, xi+2, xi+3). The marketplace fingerprinting ap-
proach generalizes the notion of an n-gram and offers a
much wider selection of n-gram types to the consumer.

Database construction. The dynamic n-gram approach
is to simply add all 1-grams to the database, then all 2-
grams, then all 3-grams, etc. until memory runs out. For
128 GB of RAM, this approach maxes out at 4-grams. This
results in a database that has complete representation of
four different types of n-grams. The marketplace finger-
printing approach, on the other hand, considers 16 differ-
ent types of n-grams and selects a subset of the most useful
fingerprints from each n-gram type in a principled way.

Search. In our analogy, the dynamic n-gram approach
corresponds to a store in which every aisle has four items,
and the consumer purchases exactly one item per aisle. The
consumer purchasing strategy is to set a fixed budget for
each aisle and to purchase the most expensive item in each



aisle that is under the budget. The marketplace fingerprint-
ing approach corresponds to a store in which every aisle
has 16 (or more) items, and the consumer can purchase
multiple items per aisle. The consumer purchasing strat-
egy is to set a fixed total budget for the whole store, deter-
mine a budget per aisle to control their total spending, and
purchase the items in each aisle with highest utility-to-cost
ratio until the aisle budget has been spent. The key idea
behind the marketplace fingerprinting approach is that op-
tions and choices are good for the consumer. Once the con-
sumer has purchased a set of fingerprints, both approaches
use the histogram of offsets method to search the database.

3. EXPERIMENTAL SETUP

The experimental setup is identical to [24] for fair compar-
ison with the dynamic n-gram approach. We describe the
data and evaluation metrics below for completeness.

The queries in our system are cell phone images taken
of physical pages of piano sheet music. There are 10 cell
phone images of 200 different piano pieces across 25 dif-
ferent composers, resulting in a total of 2000 queries. The
pictures were taken with four different cell phone models.
The cell phone pictures are spread across the length of the
piece and are taken in a variety of different physical lo-
cations, lighting conditions (including both flash and no
flash), and levels of zoom (between 1 and 5 lines of sheet
music). The proposed marketplace fingerprinting system
and the baseline systems do not have any trainable param-
eters (only hyperparameters), so we use only 40 pieces for
training (400 queries) and the remaining 160 pieces for
testing (1600 queries).

The database consists of all solo piano sheet music in
IMSLP. In total, there are 31,384 PDFs, 29,310 pieces,
and 374,758 pages of sheet music. [24] provides a pre-
computed dataset of bootleg score features on all solo pi-
ano sheet music in IMSLP, and we use this dataset without
modification.

We evaluate system performance along two axes: re-
trieval accuracy and runtime. Because each query matches
exactly one unique piece in IMSLP (with multiple differ-
ent PDF versions), we use mean reciprocal rank (MRR) as
a measure of retrieval accuracy. MRR is computed as

MRR =
1

N

N∑
i=1

1

Ri
(1)

where N indicates the number of queries and Ri indicates
the rank of the true matching piece. For the IMSLP pi-
ano dataset, Ri ranges between 1 and 29, 310. Note that
MRR ranges between 0 and 1, where 1 corresponds to per-
fect performance. We also measure the runtime required
to process each query and report the average and standard
deviation of the runtimes. All experiments were performed
on a 2.1 GHz Intel Xeon processor with 128 GB RAM.

4. RESULTS

We compare the marketplace fingerprinting approach to six
other baseline systems. The first five baselines are fixed

System
MRR Runtime

avg std
1-gram .709 21.5s 12.5s
2-gram .845 2.76s 1.11s
3-gram .808 1.99s .36s
4-gram .755 1.12s .25s
5-gram .688 1.07s .13s
dynamic n-gram .853 .98s .12s
marketplace .905 .95s .14s

Table 1. Comparison of system performance on the
camera-based piano sheet music identification task. The
middle column indicates the retrieval accuracy in terms of
mean reciprocal rank (MRR), and the rightmost column
indicates the average and standard deviation of runtimes.
The bottom row shows the performance of the proposed
marketplace fingerprinting system.

n-grams with n = 1, 2, 3, 4, 5. These approaches use a
single fixed-size n-gram as the fingerprint representation.
For example, given a sequence of bootleg score features
x1, . . . , xL, the fixed 2-gram baseline would construct fin-
gerprints of the form (xi, xi+1). The fixed n-gram ap-
proach for large-scale retrieval was explored in [17]. The
sixth baseline is the dynamic n-gram method [24], which
represents the state-of-the-art in sheet music identifica-
tion. For a given sequence of query bootleg score features
x1, . . . , xL, the dynamic n-gram constructs one fingerprint
at each offset i of the form (xi, xi+1, . . . , xi+Li

) where
0 ≤ Li ≤ 3. The size of the n-gram is selected dynam-
ically for each offset i in order to ensure that the number
of fingerprint matches in the database is below a specified
threshold.

Table 1 shows the retrieval accuracy and runtime for all
7 systems. We can see that the marketplace fingerprinting
system has the highest retrieval accuracy by a large mar-
gin (.905 vs .853). We can roughly interpret this gap as a
reduction in “errors” by about 1

3 compared to the dynamic
n-gram approach. Furthermore, this improvement in re-
trieval accuracy does not come at the expense of runtime:
the runtime budget (Btot) for the marketplace system was
selected to achieve < 1 second average runtime per query
on the training set. The improvement in retrieval accuracy
instead comes from utilizing the runtime more efficiently –
processing many more fingerprints with a higher utility-to-
cost ratio compared to the dynamic n-gram approach.

5. ANALYSIS

In this section we explore two questions of interest to gain
deeper intuition into the performance of the marketplace
fingerprinting system.

The first question of interest is, “What is the effect of the
runtime budget (Btot)?” This is a hyperparameter specify-
ing the total number of fingerprint matches in the database
that we are willing to process for each query. The total run-
time budget determines the budget for each aisle, which in
turn determines how many n-gram fingerprints will be pro-



Figure 4. Relationship between the runtime budget (Btot)
and retrieval accuracy. The runtime budget is a hyperpa-
rameter that specifies the maximum number of fingerprint
matches in the database that can be processed for a single
query.

cessed. By setting Btot appropriately, we can thus trade
off runtime for retrieval accuracy: if we’re willing to wait
longer to process the query, we can get higher quality re-
sults.

Figure 4 shows the retrieval accuracy of the marketplace
fingerprinting system across a range of runtime budget val-
ues. The retrieval accuracy improves dramatically as the
runtime budget increases from 1 to 500, but then reaches
a plateau and remains approximately constant for runtime
budget values greater than 1000. This plateau strongly sug-
gests that we have reached an upper bound on performance
through the use of redundancy in the fingerprint lookups.
Thus, we would not expect that adding more n-gram types
would improve results further. Any significant additional
improvements to retrieval accuracy would likely need to
come from a more accurate bootleg score (or alternative)
representation. Perhaps the most surprising finding in Fig-
ure 4 is how low the runtime budget is when it reaches
the plateau. With only a budget of 1000 matches – chosen
strategically, of course – it is possible to already achieve
a MRR of .908 with an average runtime of 0.71 seconds.
This is quite remarkable considering that the dynamic n-
gram model performs lookups on fingerprints with up to
10, 000 matches in the database, so that a single lookup
would likely use up the entire runtime budget.

The second questions of interest is, “What is the dis-
tribution of fingerprints in the database?” Figure 5 shows
the distribution of fingerprints in the databases for all seven
systems. 4 The fingerprints are sorted from most frequent
(left) to least frequent (right), and their frequency of occur-
rence in the IMSLP dataset is shown on the y-axis. Note
that both axes are shown on a log scale. The ideal distri-
bution for optimal hashing performance is a uniform (flat)
distribution, in which all fingerprints occur the same num-
ber of times. We can see that the marketplace fingerprint-

4 The curves for the fixed n-gram systems match those of Figure 3
in [24]. However, we have confirmed that the curve for the dynamic n-
gram system in Figure 3 of [24] is incorrect. The brown curve in Figure
5 above shows the corrected distribution.

Figure 5. Fingerprint distribution for different systems.
For each system, the set of unique fingerprints in the
database are sorted from most frequent (left) to least fre-
quent (right), and the y-axis indicates how many times each
fingerprint occurs in the database. Note that both axes are
on a log scale.

ing system has the flattest distribution, avoiding extremely
common fingerprints and minimizing extremely rare fin-
gerprints. By considering many more types of n-grams, it
is able to achieve a flatter distribution that is closer to the
ideal uniform distribution.

6. CONCLUSION

This paper proposes a way to identify sheet music using
a novel fingerprinting scheme called marketplace finger-
printing. Our approach considers the retrieval problem
through the lens of an economic marketplace in which a
consumer (the search) with a finite budget (runtime) pur-
chases items (fingerprints) in a store (the database). Build-
ing off of previous work that uses n-grams of bootleg score
features as fingerprints, we generalize the notion of n-
grams to greatly expand the number of different types of
fingerprints in order to give the consumer more options to
choose from. We show that choosing which fingerprints to
include in the database presents a type of minimax problem
in which the consumer (the runtime search problem) and
the store (the database design problem) have competing in-
terests. At runtime, the consumer (the search) is presented
with many different options (fingerprint types) to choose
from and tries to maximize utility by purchasing the items
(i.e. doing database lookups on fingerprints) that have max-
imum utility-to-cost ratio while staying under a fixed bud-
get (runtime). With experiments using all solo piano sheet
music images in IMSLP as a searchable database, we show
that the marketplace fingerprinting approach substantially
outperforms previous approaches.
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