
COMPOSER CLASSIFICATION WITH CROSS-MODAL TRANSFER
LEARNING AND MUSICALLY-INFORMED AUGMENTATION

Daniel Yang TJ Tsai
Harvey Mudd College

ABSTRACT

This paper studies composer style classification of piano
sheet music, MIDI, and audio data. We expand upon
previous work in three ways. First, we explore several
musically motivated data augmentation schemes based on
pitch-shifting and random removal of individual notes or
groups of notes. We show that these augmentation schemes
lead to dramatic improvements in model performance, of
a magnitude that exceeds the benefit of pretraining on all
solo piano sheet music images in IMSLP. Second, we de-
scribe a way to modify previous models in order to enable
cross-model transfer learning, in which a model trained
entirely on sheet music can be used to perform composer
classification of audio or MIDI data. Third, we explore the
performance of trained models in a 1-shot learning context,
in which the model performs classification among a set of
composers that are unseen in training. Our results indicate
that models learn a representation of compositional style
that generalizes beyond the set of composers used in train-
ing.

1. INTRODUCTION

This paper studies composer style classification based on
sheet music, audio, and MIDI data. Given a previously
unseen page of sheet music or fragment of audio/MIDI, the
goal is to predict which one of a fixed set of C composers
composed it based on its compositional style.

Previous works on composer classification generally
fall into one of three categories. The first category of ap-
proaches extract manually designed features from the data
and feed them to a classifier. Some features that have
been explored include chroma [1, 2], expert musicologi-
cal features [3–5], musical intervals or counterpoint char-
acteristics [6, 7], piece-level statistics or features describ-
ing piece structure [2, 8], and pre-defined feature sets like
the jSymbolic toolbox [9, 10]. Many standard classifi-
cation algorithms have been used, such as decision trees
(e.g. [7, 9]), KNN (e.g. [11]), logistic regression (e.g. [5]),
SVMs (e.g. [3, 9]), and neural networks (e.g. [2, 12]). The
second category of approaches train one sequence-based
model for each composer and then select the model that has

c© D. Yang, T. Tsai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
D. Yang, T. Tsai, “Composer Classification With Cross-Modal Transfer
Learning and Musically-Informed Augmentation”, in Proc. of the 22nd
Int. Society for Music Information Retrieval Conf., Online, 2021.

the highest likelihood for a given query sequence. These
sequence-based models include n-gram language models
[8, 13–15] and several variants of Markov models [16, 17].
These models are typically fed with a very low-level rep-
resentation of the data, such as sequences of note values
or intervals between consecutive notes. The third cate-
gory of approaches train a neural network classifier in an
end-to-end fashion. Rather than relying on manually de-
signed features, this approach tries to automatically learn
a suitable feature representation from the raw data that is
effective for classification. This paradigm was explored
early on in [18], and many recent works have focused on
convolutional neural networks trained on piano roll-like
data [19–21].

The above works generally assume that the data is avail-
able in a symbolic format such as MIDI, MusicXML, or
**kern. Recent works [22, 23] have explored the com-
poser classification task based on raw sheet music images.
While this makes the problem more challenging due to the
high-dimensional nature of images, it also provides a very
distinct advantage: there is an enormous amount of sheet
music data available through the International Music Score
Library Project (IMSLP). 1 These works first convert each
sheet music image into a sequence of musical words based
on the bootleg score feature representation [24], and then
treat the problem as one of text classification. They in-
corporate best practices from natural language processing,
such as pretraining a language model on a large set of unla-
beled data, and then finetuning a classification model based
on a small set of labeled data.

This paper expands upon [22] in three different direc-
tions. 2 First, we explore several different forms of data
augmentation for the bootleg score representation. These
include pitch shifting of noteheads relative to the staff lines
and several different forms of dropout that are musically
motivated. Second, we explore cross-modal transfer learn-
ing, in which a model is first trained entirely on sheet mu-
sic, and then used for composer classification of audio and
MIDI data. Third, we explore the performance of trained
models in a 1-shot learning context, in which the goal is
to perform classification among a set of unseen composers
given only one representative piece from each composer.

This paper has three main contributions, which corre-
spond directly with the three directions above.

• We propose several forms of data augmentation for
1 https://imslp.org
2 Code can be found at https://github.com/HMC-MIR/

ComposerID.



the bootleg score representation and evaluate their
impact on the composer classification task. We
demonstrate enormous performance improvements
(37.3% to 63.9% accuracy) which are even larger
than the benefit of pretraining on all IMSLP piano
sheet music (37.3% to 57.5%). Both can be com-
bined to achieve even greater gains (89.0%). We
share our optimal settings and selection of augmen-
tation methods, which may be useful for tasks using
symbolic data or any piano roll-like representation.

• We successfully demonstrate cross-modal transfer
learning. By making a minor modification to the
bootleg score representation, we show that it is
possible to train a model on sheet music and use
it for composer classification of audio and MIDI
data. This approach may benefit tasks where the
amount of data in one modality is limited or re-
stricted (e.g. due to copyright issues).

• We evaluate the performance of trained models in a
1-shot learning context, in which we use the model’s
penultimate layer activations as a feature embed-
ding. Our results strongly indicate that the models
are learning a more generalizable notion of compo-
sitional style that extends beyond the composers in
training.

We describe each of the three new directions in detail in
the next three sections.

2. DATA AUGMENTATION METHODS

This section explores several data augmentation schemes
for our task. The next five subsections describe the fea-
ture representation (Section 2.1), proposed augmentation
strategies (Section 2.2), experimental setup (Section 2.3),
experimental results (Section 2.4), and analyses (Section
2.5).

2.1 Feature Representation

We first describe how sheet music is converted into a se-
quence of words as proposed in [22]. This forms the back-
drop for our proposed augmentation strategies. This pro-
cess consists of two steps.

The first step is to compute a bootleg score represen-
tation of the sheet music image. The bootleg score is
a mid-level feature representation that encodes the posi-
tion of filled noteheads relative to the staff lines in piano
sheet music [24]. The bootleg score itself is a 62 × N bi-
nary matrix, where 62 indicates the total number of dis-
tinct staff line positions in both the left and right hand
staves and where N indicates the number of grouped note
events (e.g. a chord containing four notes played simul-
taneously would constitute a single grouped note event).
This representation discards a significant amount of infor-
mation in the sheet music, such as non-filled noteheads,
time signature, key signature, accidentals, note duration,
measure boundaries, octave markings, and clef changes.
Nonetheless, it has been shown to be useful for a variety of

tasks involving sheet music such as sheet-MIDI passage re-
trieval [24], audio-sheet music synchronization [25], sheet
music identification [26], and finding matches between the
Lakh MIDI dataset and IMSLP [27].

The second step is to tokenize the bootleg score. This is
done in two different ways, depending on if the language
model architecture is word-based or subword-based. For
word-based models (e.g. AWD-LSTM [28]), each column
of the bootleg score (62 bits) is represented as a single 64-
bit integer and interpreted as a word. For subword-based
models (e.g. GPT-2 [29], RoBERTa [30]), each column is
represented as a sequence of four 8-bit characters so that
the bootleg score can be expresseed as a length 4N se-
quence of 8-bit characters. Based on a training set of char-
acter sequences, a byte pair encoder (BPE) [31] can be
trained in an unsupervised fashion to learn a vocabulary
of common subwords. The trained BPE can then be used
to tokenize the length 4N sequence of characters into a se-
quence of subwords. The result of the tokenization step is a
sequence of words or subwords that are fed to the language
model.

2.2 Proposed Augmentation Strategies

We explore two different types of data augmentation for
the bootleg score representation. These strategies could be
applied to symbolic data or piano roll representations as
well.

The first type of data augmentation is based on pitch
shifting noteheads in the bootleg score. Similar to other
musically informed representations like chroma and CQT,
shifts in the bootleg score correspond to transpositions in
key. We consider pitch shifts up to ±K positions, where
K is a hyperparameter. When a pitch-shifted notehead falls
off the edge of the bootleg score (i.e. the top or bottom of
the left hand or right hand staff), the notehead is simply
removed. Note that a value of K will result in 2K + 1
times as much data as the original dataset. We consider
pitch-shifting at both training time as well as at test time.
For the latter, we pitch shift a query bootleg score by up
to ±K positions, pass all 2K + 1 bootleg scores through
the trained model, and average the predictions to generate
a single ensemble prediction.

The second type of data augmentation is based on re-
moving noteheads in the bootleg score. This strategy is
based on the simple observation that randomly adding a
note to a column of the bootleg score is unlikely to yield
a musically plausible event, whereas randomly removing
one or more notes from a column of the bootleg score is
likely to yield a musically plausible event. For example,
consider a column in the bootleg score that contains oc-
taves in the left hand and a chord in the right hand. If a
single note or even an entire hand is removed, the result is
still a musically plausible event. We consider three differ-
ent types of removal: randomly dropping each individual
notehead with some probability, randomly dropping an en-
tire hand (i.e. all noteheads in the left or right hand staff)
within a single bootleg score column, or randomly drop-
ping an entire column of the bootleg score. Since these



methods correspond to applying a form of dropout regu-
larization directly to the bootleg score representation, we
refer to these three types of removal as DropNote, Drop-
Hand, and DropColumn regularization, respectively.

2.3 Experimental Setup

We use the same experimental setup as [22] for fair com-
parison. A brief summary is provided below for complete-
ness.

The unlabeled data for language model pretraining con-
sists of all solo piano sheet music images in IMSLP. It con-
tains 29,310 PDFs, 255,539 pages, and 48.5 million boot-
leg score features. We used the precomputed bootleg score
features provided in [26]. We will refer to this unlabeled
dataset as the IMSLP data. During language model pre-
training, 90% of the data is used for training and 10% for
validation.

The labeled dataset for the composer classification task
is a carefully curated subset of the IMSLP data. It contains
one representative sheet music version from every solo
piano piece in IMSLP from nine different classical mu-
sic composers: Bach, Beethoven, Chopin, Haydn, Liszt,
Mozart, Schubert, Schumann, and Scriabin. These PDFs
were manually filtered to remove filler pages like title page,
foreword, etc. The resulting set contains 787 PDFs, 7,151
pages, and 1.47 million bootleg score features. The labeled
data is split by piece into training (4347 pages), validation
(1500 pages), and test (1304 pages) sets.

The labeled dataset was further preprocessed to form a
fragment dataset in order to solve two problems: too lit-
tle data (only 4347 training images) and significant class
imbalance. A fixed number of bootleg score fragments
of length 64 were randomly sampled from each composer.
The resulting fragment dataset contains 32400, 10800, and
10800 fragments for training, validation, and test, respec-
tively.

We report classification results on both the fragment
classification task and the full page classification task. The
fragment dataset is used for training all models, since it has
more training samples and is class-balanced. When eval-
uating a model on the full page task, fragments of length
64 are taken from the query bootleg score with 50% over-
lap, all fragments are passed through the fragment classi-
fication model, and the predictions are averaged to form a
single prediction for the entire page. We report results in
terms of classification accuracy for the fragment classifica-
tion task and macro F1 for the full page classification task
(since the classes are imbalanced with pages).

2.4 Results

Figure 1 compares the performance of several classifica-
tion models on the fragment composer classification task
(left) and full page classification task (right). The results
without data augmentation are shown as black horizontal
lines, and the results with optimal data augmentation set-
tings (described in Section 2.5) are shown as colored bars.
Note that the results without data augmentation correspond
to the results reported in [22]. Results are reported for four

Figure 1. Results for sheet music composer classifica-
tion of fragments (left) and full pages (right). The col-
ored bars show performance with optimal data augmenta-
tion settings, and the horizontal black lines show perfor-
mance without any data augmentation.

different classification models and across three different
pretraining conditions. The four model architectures are a
CNN model (based on [19]) that has two convolutional lay-
ers followed by global pooling across the time dimension
and a final output layer, AWD-LSTM [28], RoBERTa [30],
and GPT-2 [29]. The three pretraining conditions are: (a)
no pretraining, in which models are trained from scratch
only on the labeled fragment dataset, (b) target pretrain-
ing, in which language models are pretrained on the la-
beled data and then finetuned for the classification task,
and (c) IMSLP pretraining, in which we pretrain the lan-
guage models on the IMSLP data, finetune the language
model on the labeled data, and then finetune the classifier
on the labeled fragment dataset.

There are a few things to notice about Figure 1. Across
all models and all pretraining conditions, there is an ex-
tremely large benefit to using data augmentation. In all
cases, the benefit of data augmentation is larger than the
benefit of pretraining. For example, for the RoBERTa
model, data augmentation improves performance on the
full page classification task from 0.44 to 0.88 macro F1
(without any pretraining), while pretraining on IMSLP
improves performance from 0.44 to 0.64 (without any
data augmentation). When both data augmentation and
pretraining are combined, the benefit is enormous: the
RoBERTa model increases from 36.8% accuracy to 84.7%
and from 0.44 macro F1 to 0.93.

2.5 Analysis

Figure 2 shows the benefit of adding a single type of
training data augmentation in isolation. The results on
the fragment classification task on the validation set are
shown at left, and the results on the full page classifica-
tion task are shown at right. Within each figure, the left-



Figure 2. Effect of adding a single type of data augmenta-
tion in isolation to the GPT-2 model. Individual bars within
each group show the effect of different hyperparameter set-
tings. The leftmost standalone bar shows the performance
without data augmentation for comparison.

most (standalone) bar shows the performance of the GPT-2
model without data augmentation for reference. The four
groups of bars correspond to four different types of train-
ing data augmentation: pitch shifting, DropNote, Drop-
Hand, and DropColumn. Within each group, individual
bars show the performance with different hyperparame-
ters settings (e.g. K = 1, 2, 3, 4, 5 for pitch shifting and
p = 0.1, 0.2, 0.3, 0.4, 0.5 for the dropout variants). We can
see that pitch shifting seems to be the most effective form
of data augmentation, followed by DropNote, DropHand,
and then DropColumn. The optimal amount of pitch shift-
ing seems to be K = 4, above which the results get slightly
worse. Most likely this is because large pitch shifts result
in many noteheads simply being removed from the bootleg
score canvas.

Figure 3 shows the benefit of adding various forms of
data augmentation cumulatively. Again the leftmost (stan-
dalone) bar shows the performance without data augmen-
tation. The first (leftmost) group of bars shows the perfor-
mance with only training pitch shift augmentation. These
results are identical to those shown in Figure 2. The second
group of bars shows the performance with training pitch
shift augmentation (K = 4) and DropNote with various
values of p. Each successive group adds an additional form
of augmentation with the optimal settings of previous aug-
mentation types. This figure allows us to see the cumula-
tive benefit of adding multiple forms of data augmentation.
We see dramatic improvements from adding the most ef-
fective forms of augmentation, and modest but nontrivial
improvements after that. The optimal settings are train-
ing pitch shifting with K = 4, DropNote with p = 0.3,
DropHand with p = 0.3, DropColumn with p = 0.3 and
test-time pitch shifting with K = 4. These are the settings
used in the results shown in Figure 1.

Figure 3. Effect of adding each type of data augmentation
cumulatively to the GPT-2 model. Each group uses the
optimal settings from previous augmentation types.

3. CROSS-MODAL TRANSFER LEARNING

This section describes our exploration into cross-modal
transfer learning, in which a model trained entirely on
sheet music is used to perform composer classification of
audio and MIDI data. In the next three subsections, we de-
scribe the methodology (Section 3.1), experimental setup
(Section 3.2), and experimental results (Section 3.3).

3.1 Methodology

The key to cross-modal transfer learning is representing
audio, MIDI, and sheet music in a common feature space.
That feature space is a modified bootleg score representa-
tion. Below, we describe a way to bridge the gap between
MIDI and sheet music using this modified bootleg score
representation. For audio performances of piano music,
we first apply an automatic music transcription (AMT) sys-
tem [32], and then follow the procedure below.

We can extract a bootleg score from MIDI by map-
ping MIDI note onset events to staff line positions in sheet
music using the conventions of Western musical notation.
However, there are two obstacles that prevent a MIDI-
generated bootleg score and a sheet music-generated boot-
leg score from being directly comparable. First, there is
ambiguity about left/right hand attribution. For example,
if a C4 note onset occurs in a MIDI file, it could appear in
the left hand staff (one ledger line above the topmost staff
line) or the right hand staff (one ledger line below the bot-
tom staff line). In the sheet music, it will only appear in one
of these locations. Second, there is ambiguity about enhar-
monic representations. For example, a MIDI note number
61 could appear in the sheet music as a C-sharp or a D-flat,
and these correspond to two different staff line positions.

These two ambiguities can be resolved in different
ways. To handle the ambiguity due to left/right hand attri-
bution, we can simply place noteheads in the middle regis-
ter in both the left hand and right hand staves. For exam-
ple, if the sheet music contains a notehead one ledger line



below the right hand staff (i.e. C4 in treble clef), an ad-
ditional notehead will be placed one ledger line above the
left hand staff (i.e. C4 in bass clef). Likewise, a MIDI note
onset at C4 will result in two noteheads at the same two
locations in the MIDI-generated bootleg score. By making
this modification to the bootleg score representation, the
MIDI-generated bootleg score and sheet music-generated
bootleg score will match. To handle the ambiguity due
to enharmonic representations, we can generate two dif-
ferent versions of the MIDI bootleg score: one in which
all black keys on the piano are interpreted as sharps, and
one in which all black keys on the piano are interpreted as
flats. We can then pass both versions of the MIDI boot-
leg score through our classification model and average the
resulting predictions. This method for bridging the gap be-
tween MIDI and sheet music was first proposed in [27] for
a MIDI-sheet retrieval task. Here, we use the same tech-
nique for cross-modal transfer learning in composer clas-
sification.

Cross-modal transfer learning thus requires two
changes to the system described in Section 2. The first
change is to use the modified bootleg score representation
when converting sheet music to a sequence of words. The
models are otherwise trained exactly as before. The sec-
ond change is to consider both sharp and flat versions of
the MIDI-generated bootleg score during inference, and to
average the model’s predictions from both.

3.2 Experimental Setup

In order to assess the effectiveness of cross-modal trans-
fer learning, we need to introduce additional datasets of
MIDI and audio for the composer classification task. These
datasets are derived from the MAESTRO dataset [33],
which contains MIDI and audio files of real piano perfor-
mances. We preprocess the dataset in the following man-
ner. First, we take all MIDI performances of pieces com-
posed by the same nine composers in our labeled sheet
music dataset. Because some pieces are performed many
times, we take one representative performance for each
piece to avoid overemphasizing a small set of popular
pieces. Second, we randomly sample X = 5000 frag-
ments of length Y seconds from each composer, spread
evenly across the composer’s pieces. This sampling strat-
egy produces a dataset of fragments that is class-balanced,
and it allows us to study the effect of fragment length
on model accuracy. Because we are not doing any addi-
tional training or finetuning, we use all of the MIDI data
as a test set. This constitutes our MIDI fragment com-
poser classification dataset. A corresponding audio frag-
ment composer classification dataset can be generated us-
ing the same methodology.

Note that the above dataset contains many pieces that
were in the labeled sheet music dataset, albeit in a dif-
ferent modality. To further study the generalizability of
our trained models, we constructed two different versions
of the audio/MIDI fragment classification datasets: one
in which all of the data is present, and another in which
pieces that were in the labeled sheet music training data

Figure 4. Results for composer classification of MIDI
(colored bars) and audio (horizontal black bars) on the full
(left plot) and reduced (right plot) datasets. The results are
with a GPT-2 model trained only on sheet music.

are excluded. Because the latter has many fewer pieces,
we reduce the number of fragments per composer to X =
500. The number of pieces for each composer in the
full/reduced datasets are: Bach – 101/27, Beethoven 87/21,
Chopin – 101/31, Haydn – 29/13, Liszt – 108/25, Mozart
– 36/12, Schubert – 103/33, Schumann – 32/8, Scriabin –
25/1. In total, there are 622 pieces in the full dataset and
171 pieces in the reduced dataset.

3.3 Results

Figure 4 compares the performance of four different mod-
els on the MIDI and audio fragment classification tasks.
The left plot shows performance on the dataset contain-
ing all pieces, and the right plot shows performance on
the dataset that excludes pieces in the sheet music training
dataset. The performance on the MIDI fragment classifi-
cation task is shown by colored bars, and the performance
on the audio fragment classification task is indicated with
horizontal black lines. The four models shown are the
best version of each model architecture from Figure 1: the
CNN, AWD-LSTM, RoBERTa, and GPT-2 models with
optimal data augmentation settings and IMSLP pretraining
(for the language models). The four groups of bars in each
plot correspond to the four different models. Within each
group, the individual bars show the model performance for
different durations of the audio/MIDI query. Similar to the
full page sheet music classification task, we convert each
audio/MIDI query to a bootleg score, take fragments of
length 64 with 50% overlap, pass each fragment through
the classification model, and average the predictions from
all fragments. When processing audio queries, the Onsets
& Frames AMT system [32] is used to convert the audio to
an estimated MIDI representation.

There are four things to notice about Figure 4. First, the
results do clearly demonstrate effective cross-modal trans-
fer learning. Because the datasets are balanced by class,



random guessing would correspond to an accuracy of 11%.
In contrast, the GPT-2 model is predicting the correct com-
poser of 60-second MIDI fragments 83% and 76% of the
time on the two versions of the MIDI classification data.
This shows that we can train a model on sheet music data,
and then use it to classify MIDI and audio data without
any additional training or finetuning. Second, there is a
6-8% difference in accuracy between the two versions of
datasets (i.e. comparing the left plot to the right plot). This
reflects the benefit of having seen a piece before in train-
ing in a different modality. But even when a piece has
never been seen before – in any modality – the results in
the righmost plot show that the models still perform well.
Third, there is a 4-6% difference in accuracy between the
MIDI classification task and the audio classification task
(i.e. comparing colored bars to the black horizontal lines).
This gap comes from failures in the AMT system when
converting from audio to MIDI. Fourth, the query duration
strongly affects model performance for shorter queries, but
plateaus at a duration of about 50 seconds (i.e. comparing
individual bars within each group). This suggests that 40-
50 seconds is enough context to recognize the style of a
piece, and that using more context beyond that is unlikely
to help much.

4. ONE-SHOT LEARNING

This section describes our exploration of using trained
models in a 1-shot learning context, in which the model
is expected to classify pieces from a set of C unseen com-
posers given only a single representative piece from each
composer. In the next three subsections, we describe our
methodology (Section 4.1), experimental setup (Section
4.2), and experimental results (Section 4.3).

4.1 Methodology

For 1-shot learning, we use our trained classification mod-
els as a feature extractor that projects sheet music into an
embedding space that captures some notion of composi-
tional style. We take the penultimate layer activations of
the model as our feature representation. When processing
a MIDI or audio performance, we first compute the bootleg
score (using AMT to convert the audio to MIDI, if neces-
sary), take multiple bootleg score fragments of length 64
with 50% overlap, and then extract the embedding features
from each fragment. On training data, each fragment’s em-
bedding serves as a single sample in our KNN database.
For a given test bootleg score fragment, we find the K = 3
closest samples in Euclidean distance from each composer,
and then rank composers by their average KNN distance.

4.2 Experimental Setup

Our data for 1-shot classification experiments also comes
from the MAESTRO dataset. We exclude the original nine
composers used in training and identify nine other com-
posers with sufficient data: Rachmaninoff, Debussy, Scar-
latti, Mendelssohn, Brahms, Mussorgsky, Tchaikovsky,
Clementi, and Handel. We sample five pieces from each

Model
MIDI Audio

Acc Std Acc Std
Random 16.6% 2.2% 13.9% 2.0%
CNN 39.1% 2.1% 38.2% 3.7%
AWD-LSTM 45.5% 2.2% 42.8% 4.2%
RoBERTa 50.3% 3.1% 49.1% 3.4%
GPT-2 52.8% 3.9% 52.7% 3.1%

Table 1. Results for 1-shot learning experiments on com-
poser classification of MIDI (left) and audio (right) frag-
ments. The trained models are used to classify among
C = 9 unseen composers given a single representative
piece from each composer.

composer to ensure equal representation. For each episode,
we randomly select one of the five pieces from each com-
poser to serve as our training data, and use the remain-
ing data for testing. Each test query is a single boot-
leg score fragment of length 64 extracted from one of the
9 × 4 = 36 test pieces (with 50% overlap between frag-
ments). For each episode, we calculate the classification
accuracy across the test queries. We ran 30 episodes with
different train/test splits, and report the mean and standard
deviation of the classification accuracy across the episodes.

4.3 Results

Table 1 shows the results of our 1-shot classification exper-
iments. We report results with the best versions of each of
the four model architectures. We also include the perfor-
mance of a random guessing baseline as reference.

There are three things to notice about these results.
First, all models perform much better than the random
guessing baseline. This strongly indicates that the models
are learning a more generalizable notion of compositional
style that goes beyond the original nine composers in the
training data. Second, we see the same relative ordering of
performance as before: GPT-2 performs best, followed by
RoBERTa, AWD-LSTM, and the CNN model. This sug-
gests that better results on the original composer classifi-
cation task are indicative of a more useful representation
in the style embedding space. Third, we again observe a
consistent difference in performance between 1-shot MIDI
and 1-shot audio classification due to AMT errors.

5. CONCLUSION

This paper expands upon composer classification models
in three ways. First, we propose several forms of data
augmentation that lead to dramatic improvements in model
performance. Second, we show that it is possible to mod-
ify previous models in order to enable cross-modal transfer
learning, in which a model trained entirely on sheet music
is used to perform composer classification on audio and
MIDI data. Third, we show that trained models are effec-
tive in a 1-shot learning context, indicating that the models
learn a representation of style that generalizes beyond the
original composers used in training.



6. ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the GPU used for training the
models.

7. REFERENCES

[1] Y. Anan, K. Hatano, H. Bannai, M. Takeda, and
K. Satoh, “Polyphonic music classification on sym-
bolic data using dissimilarity functions,” in Proc. of the
International Society for Music Information Retrieval
Conference (ISMIR), 2012, pp. 229–234.

[2] M. A. Kaliakatsos-Papakostas, M. G. Epitropakis,
and M. N. Vrahatis, “Musical composer identifica-
tion through probabilistic and feedforward neural net-
works,” in European Conference on the Applications of
Evolutionary Computation, 2010, pp. 411–420.

[3] W. Herlands, R. Der, Y. Greenberg, and S. Levin, “A
machine learning approach to musically meaningful
homogeneous style classification,” in Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[4] E. Backer and P. van Kranenburg, “On musical
stylometry–a pattern recognition approach,” Pattern
Recognition Letters, vol. 26, no. 3, pp. 299–309, 2005.

[5] K. C. Kempfert and S. W. Wong, “Where does
haydn end and mozart begin? composer classification
of string quartets,” arXiv preprint arXiv:1809.05075,
2018.

[6] L. Mearns, D. Tidhar, and S. Dixon, “Characterisation
of composer style using high-level musical features,”
in Proc. of the 3rd International Workshop on Machine
Learning and Music, 2010, pp. 37–40.

[7] P. Van Kranenburg and E. Backer, “Musical style
recognition—a quantitative approach,” in Handbook of
Pattern Recognition and Computer Vision, 2005, pp.
583–600.

[8] R. Hillewaere, B. Manderick, and D. Conklin, “String
quartet classification with monophonic models,” in
Proc. of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2010, pp. 537–542.

[9] D. Herremans, D. Martens, and K. Sörensen, “Com-
poser classification models for music-theory building,”
in Computational Music Analysis, 2016, pp. 369–392.

[10] C. McKay and I. Fujinaga, “jSymbolic: A feature ex-
tractor for midi files,” in Proc. of the International
Computer Music Conference, 2006.

[11] A. Brinkman, D. Shanahan, and C. Sapp, “Musical sty-
lometry, machine learning and attribution studies: A
semi-supervised approach to the works of josquin,” in
Proc. of the Biennial International Conference on Mu-
sic Perception and Cognition, 2016, pp. 91–97.

[12] P. Sadeghian, C. Wilson, S. Goeddel, and A. Olmsted,
“Classification of music by composer using fuzzy min-
max neural networks,” in Proc. of the 12th Interna-
tional Conference for Internet Technology and Secured
Transactions (ICITST), 2017, pp. 189–192.

[13] M. Hontanilla, C. Pérez-Sancho, and J. M. Inesta,
“Modeling musical style with language models for
composer recognition,” in Iberian Conference on Pat-
tern Recognition and Image Analysis, 2013, pp. 740–
748.

[14] J. Wołkowicz and V. Kešelj, “Evaluation of n-gram-
based classification approaches on classical music cor-
pora,” in International Conference on Mathematics
and Computation in Music, 2013, pp. 213–225.

[15] J. Wołkowicz, Z. Kulka, and V. Kešelj, “N-gram-based
approach to composer recognition,” Archives of Acous-
tics, vol. 33, no. 1, pp. 43–55, 2008.

[16] M. A. Kaliakatsos-Papakostas, M. G. Epitropakis, and
M. N. Vrahatis, “Weighted markov chain model for
musical composer identification,” in European Confer-
ence on the Applications of Evolutionary Computation,
2011, pp. 334–343.

[17] E. Pollastri and G. Simoncelli, “Classification of
melodies by composer with hidden markov models,”
in Proc. of the First International Conference on WEB
Delivering of Music, 2001, pp. 88–95.

[18] G. Buzzanca, “A supervised learning approach to mu-
sical style recognition,” in Proc. of the International
Conference on Music and Artificial Intelligence (IC-
MAI), vol. 2002, 2002, p. 167.

[19] H. Verma and J. Thickstun, “Convolutional composer
classification,” in Proc. of the International Society
for Music Information Retrieval Conference (ISMIR),
2019, pp. 549–556.

[20] G. Velarde, C. C. Chacón, D. Meredith, T. Weyde, and
M. Grachten, “Convolution-based classification of au-
dio and symbolic representations of music,” Journal
of New Music Research, vol. 47, no. 3, pp. 191–205,
2018.

[21] G. Velarde, T. Weyde, C. E. C. Chacón, D. Meredith,
and M. Grachten, “Composer recognition based on 2d-
filtered piano-rolls,” in Proc. of the International So-
ciety for Music Information Retrieval Conference (IS-
MIR), 2016, pp. 115–121.

[22] T. Tsai and K. Ji, “Composer style classification of pi-
ano sheet music images using language model pretrain-
ing,” in Proc. of the International Society for Music
Information Retrieval Conference (ISMIR), 2020, pp.
176–183.

[23] D. Yang, K. Ji, and T. Tsai, “A deeper look at sheet mu-
sic composer classification using self-supervised pre-
training,” Applied Sciences, vol. 11, no. 4, p. 1387,
2021.



[24] D. Yang, T. Tanprasert, T. Jenrungrot, M. Shan, and
T. Tsai, “MIDI passage retrieval using cell phone pic-
tures of sheet music,” in Proc. of the International So-
ciety for Music Information Retrieval Conference (IS-
MIR), 2019, pp. 916–923.

[25] M. Shan and T. Tsai, “Improved handling of repeats
and jumps in audio-sheet image synchronization,” in
Proc. of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2020, pp. 62–69.

[26] D. Yang and T. Tsai, “Camera-based piano sheet mu-
sic identification,” in Proc. of the International Society
for Music Information Retrieval Conference (ISMIR),
2020, pp. 481–488.

[27] T. Tsai, “Towards linking the Lakh and IMSLP
datasets,” in Proc. of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 2020, pp. 546–550.

[28] S. Merity, N. S. Keskar, and R. Socher, “Regulariz-
ing and optimizing LSTM language models,” arXiv
preprint arXiv:1708.02182, 2017.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised mul-
titask learners,” OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

[30] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“RoBERTa: A robustly optimized BERT pretraining
approach,” arXiv preprint arXiv:1907.11692, 2019.

[31] P. Gage, “A new algorithm for data compression,” C
Users Journal, vol. 12, no. 2, pp. 23–38, 1994.

[32] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon,
C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and
frames: Dual-objective piano transcription,” in Proc.
of the International Society for Music Information Re-
trieval Conference (ISMIR), 2018, pp. 50–57.

[33] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-
Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and
D. Eck, “Enabling factorized piano music modeling
and generation with the MAESTRO dataset,” in In-
ternational Conference on Learning Representations,
2019.


