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ABSTRACT
Audio fingerprinting refers to the process of extracting a robust,
compact representation of audio which can be used to uniquely iden-
tify an audio segment. Works in the audio fingerprinting literature
generally report results using system-level metrics. Because these
systems are usually very complex, the overall system-level perfor-
mance depends on many different factors. So, while these metrics
are useful in understanding how well the entire system performs,
they are not very useful in knowing how good or bad the fingerprint
design is. In this work, we propose a metric of fingerprint effective-
ness that decouples the effect of other system components such as
the search mechanism or the nature of the database. The metric is
simple, easy to compute, and has a clear interpretation from an infor-
mation theory perspective. We demonstrate that the metric correlates
directly with system-level metrics in assessing fingerprint effective-
ness, and we show how it can be used in practice to diagnose the
weaknesses in a fingerprint design.

Index Terms— audio fingerprint, copy detection

1. INTRODUCTION

Audio fingerprinting refers to the process of extracting a robust,
compact representation of audio which can be used to uniquely iden-
tify an audio segment. One major application of this technology is
copy detection, where the goal is to detect when a user illegally up-
loads a television show, movie, or song to a filesharing website. An-
other application of this technology is music identification, where a
user sitting in a restaurant would like to identify a song that is play-
ing in the background. Using a phone application like Shazam [1]
or SoundHound [2], the user can record a short audio segment of the
song and find out the name of the song and artist.

Many approaches have been proposed for this problem, and
here we describe some of the most prominent works. The most
well known approach is the Philips fingerprint described by Haitsma
and Kalker [3]. The Philips fingerprint considers 33 logarithmically
spaced bands below 2kHz and performs 32 comparisons per frame,
where each comparison considers whether the energy difference
in adjacent frequency bands increases or decreases in two consec-
utive frames. Ke et al. [4] extends this work by considering the
spectrogram as an image and introducing a boosting algorithm to
automatically select 32 features (and their corresponding thresholds)
from a family of Viola-Jones face detection features [5]. The se-
lected 32 features are computed at each frame and compared to their
corresponding thresholds to generate 32 bit fingerprints. Another
well known approach is the Shazam fingerprint described by Wang
[6]. The Shazam fingerprint identifies the location of spectral peaks
in the spectrogram, considers various pairings of spectral peaks, and
encodes each peak pair as a single 32 bit fingerprint of the form

(f1, f2,4t), where f1 and f2 represent the frequency of the 2
peaks and 4t represents the time difference between the peaks.
Another peak-based approach is the waveprint described by Baluja
and Covell [7][8]. The waveprint considers sections of the spec-
trogram as an image, computes the Haar wavelet, identifies the top
t wavelet coefficients, and encodes the locations of these maxima
with a Min-Hash algorithm.

The above works – and virtually all the works in the audio fin-
gerprinting literature – generally measure the effectiveness of their
approach in one of two ways. One way is to consider a fixed search-
able database and to measure the recognition rate. This might in-
clude the percentage of queries that were identified correctly or indi-
rect measures like the fingerprint bit error rate. The works by Baluja
and Covell [7][8], Wang [6], and Haitsma and Kalker [3] use this
metric. The second way is to treat the evaluation as a detection prob-
lem and measure the tradeoff between false alarms and miss detec-
tions (or some derivative thereof). Common metrics include the re-
ceiver operation characteristic (ROC) curve, detection error tradeoff
(DET) curve, precision-recall curve, normalized cost detection ratio
(NDCR), and accuracy at a fixed false alarm rate. Most of the works
from the trecvid content based‘ copy detection (CBCD) evaluation
[9] fall into this category, since the standardized metric of evaluation
is NDCR.

These metrics are very useful in measuring overall system-level
performance. However, they are not very useful in measuring fin-
gerprint effectiveness. The systems being measured are usually
very complex. The overall system performance reflects many dif-
ferent factors including fingerprint design, the nature of the search
mechanism, the amount of redundancy built into the search mecha-
nism, how large the searchable database is, how similar items in the
database are to one another, the nature of the noise and distortion,
and the configuration of parameter settings. One consequence of
this is that it is very difficult to have an intuition about how good
or bad a fingerprint design actually is based only on overall system
performance.

In this work, we propose a metric that directly measures the ef-
fectiveness of a fingerprint design given a set of corresponding clean
and noisy audio data. This metric does not require one to implement
a search mechanism or construct a database of audio fingerprints,
and so it can be computed very efficiently with minimal setup and
resources. The metric is simple, easy to compute, and has a clear
interpretation from an information theory perspective.

In the next section, we introduce the metric and provide motiva-
tion and intuition. To demonstrate the usefulness of this metric, we
then apply this metric to the well known Philips fingerprint to diag-
nose its weaknesses. Having immediate feedback about the effec-
tiveness of a fingerprint design allows a researcher to quickly build
intuition and understanding of good design principles with a mini-



Fig. 1. Block diagram describing computation of useful information
rate.

mum of setup and computation.

2. THE METRIC

We propose a metric called useful information rate. It is given by the
following simple formula:

useful information rate = entropy× accuracy

Here, entropy refers to the number of bits of information that each
fingerprint communicates on average. Accuracy refers to the per-
centage of time that the clean and corresponding noisy audio frames
yield the same fingerprint value. To gain some intuition, consider
a fingerprint which is all 0’s all the time. This fingerprint will have
100% accuracy (since it will always be correct, regardless of how se-
vere the distortion is) but have 0 bits of entropy, resulting in a useful
information rate of 0 bits per fingerprint (bits/fp). On the other hand,
consider a fingerprint which consists of 32 random, independent bits.
In this case, the fingerprint will have an entropy of 32 bits but an
accuracy of 2−32, resulting in a useful information rate of approx-
imately 0 bits/fp. This metric has a very clear interpretation from
an information theory perspective: each fingerprint communicates a
certain amount of useful information (i.e. correct information) on
average, and we would like to maximize that information rate.

Figure 1 shows how the useful information rate can be com-
puted given a set of audio data and a distortion model. The distortion
model will depend on the application at hand. For example, if the tar-
get application is online copy detection, the distortion model might
include conversions between different audio formats, varying lev-
els of compression, frame dropping, and equalization. If the target
application is music identification on a smart phone, the distortion
model might include room reverberation, GSM encoding, and other
additive noise sources. Note that we could just as well use real noisy
audio data. The only requirement for computing useful information
rate is that we be able to map a noisy audio frame to its correspond-
ing clean audio frame. Given the clean and noisy audio, we then
extract fingerprints (using the fingerprinting method that we would
like to evaluate). To compute accuracy, we compare each clean fin-
gerprint and its corresponding noisy fingerprint and determine what
fraction of the time they match. To compute entropy, we use the
standard formula

entropy = −
∑
xi

p(xi) · log2p(xi)

where p(xi) represents our estimate of the fingerprint distribution
based on histogram counts. The useful information rate is then sim-
ply the product of entropy and accuracy.

There are two things to mention about using this metric in prac-
tice. First, note that the notion of accuracy can be defined in a flexi-
ble manner. For example, some approaches [3][4] build redundancy

into the system by searching not just for exact fingerprint matches,
but also fingerprints that are, say, within a Hamming distance of 1.
In this case, our notion of accuracy becomes “what fraction of clean
and noisy fingerprint pairs are within a Hamming distance of 1 of
each other?” The definition can be flexible to accommodate the sys-
tem design, while still retaining a clear interpretation. Second, note
that having sufficient statistics to estimate entropy requires exponen-
tially more data as the size of the fingerprint grows. Fortunately, in
practice we observe that estimating the entropy with a smaller num-
ber of fingerprint bits shows a predictable relationship between the
number of bits and the entropy (assuming a consistent method is
used to compute additional bits). For example, we observed a very
strong linear relationship between the number of bits and entropy
in the Philips fingerprint model (where we only use a subset of the
bits). So, for a higher number of fingerprint bits, we could simply
use a linearly extrapolated estimate of entropy.

Now that we have introduced what the metric is, we now turn our
attention to demonstrating how a researcher would use this metric to
diagnose the deficiencies in a fingerprint design. We will demon-
strate this concretely by showing a series of simple experiments that
illuminate the inner workings of the Philips fingerprint. There are
three main components to its design: the number of bits, the filter
design, and the thresholds for each filter. We will investigate these
three components in the next 3 sections.

3. FINGERPRINT SIZE

In this section, we investigate how the number of bits affects the ef-
fectiveness of the fingerprint. The original Philips fingerprint has 32
bits, where the ith bit represents whether the difference in energy
between frequency bands i and i+1 increases or decreases between
2 consecutive frames. Here, we investigate how effective the finger-
print is when using only a subset of the bits.

We adopt the general setup shown in figure 1, using audio data
from the trecvid CBCD task. For the sake of simplicity and clarity,
we will consider a simple distortion model which adds white gaus-
sian noise at various signal-to-noise ratios (SNRs). This setup will
allow us to characterize the performance across a range of conditions
rather than just getting a single performance metric. To emphasize
how lightweight the setup can be and yet still be useful, we will
compute the useful information rate on 10,000 randomly sampled
frames (and their surrounding context), rather than on the full 400
hour trecvid data set. This corresponds to only a few minutes of
audio.

Figure 2 shows the useful information rate of the Philips finger-
print with l bits, for l ranging from 1 to 32. We see that using more
bits would be only marginally helpful in the high SNR regime. At
30dB SNR, the useful information rate has mostly leveled off by the
time l reaches 32. For the medium SNR range (10-20dB), we see
that the useful information rate peaks between 8 and 15 bits. We can
use significantly fewer bits and get both better performance and less
computation. For the low SNR range (<10dB), we see that using 32
bits is a very poor choice of l.

Note that the results in figure 2 are the result of two conflated
factors: the number of bits and the amount of spectrum that is con-
sidered. Even so, our analysis indicates that the Philips fingerprint
probably has way too many bits. For most applications, its perfor-
mance would improve if fewer comparison were performed. In the
literature, there is often an unspoken assumption that squeezing a fin-
gerprint into a single 32 bit representation is good because it means
the fingerprint designer was economical with memory. The real-
ity, however, is that using 32 bits is probably way too high for a



Fig. 2. Relationship between fingerprint size and useful information
rate.

threshold-based approach like the Philips fingerprint. Note that a set
of 32 perfectly uncorrelated fingerprint bits with impressive accura-
cies of .97 would only have a fingerprint accuracy of approximately
.38.

4. FILTER SELECTION

In this section, we investigate the question of filter design. The orig-
inal Philips fingerprint uses a 2 × 2 checkerboard filter centered at
different frequency bands. But one might wonder if there is a better
selection of filters.

Consider one of the 2×2 checkerboard filters. The fingerprint bit
corresponding to this filter is determined by adding and subtracting
the appropriate values and then comparing the result to the thresh-
old value of 0. By its symmetrical construction and the law of large
numbers, we know that the feature (before being thresholded) will
have a bell-shaped distribution centered at 0. If a particular feature
falls close to 0, a small amount of perturbation from noise may cause
it to fall on the wrong side of the threshold, which would result in
an incorrect bit. We can minimize this occurrence by increasing the
spread of the feature distribution. This suggests that we can improve
fingerprint effectiveness by selecting filters that maximize the vari-
ance of the feature distribution.

We can very quickly test this hypothesis by evaluating several
fingerprint designs on our small sample of 10,000 frames (along
with their context frames). Since “pixels” in the spectrogram that are
close together in time or frequency will tend to be highly correlated,
we want to avoid taking the difference of adjacent elements. So, in-
stead of the 2× 2 checkerboard filters in the original Philips model,
we consider a set of 2×m filters in which the leftmost m

2
columns

are added and the rightmost m
2

columns are subtracted. As before,
the ith filter will be centered at frequency band i. As m increases, we
expect the variance of the feature distribution to increase, and thus
for the fingerprint to be more robust. Is this what we observe?

Fig. 3. Effect of filter width on useful information rate.

Figure 3 shows the result of these experiments. Each group of
bars shows the useful information rate of the fingerprint model with
width m at a given SNR. Indeed, we observe that as m increases,
the fingerprint model improves slowly but steadily. This validates
the idea that maximizing the variance of the features will yield the
most robust fingerprint. In a sister submission [10] we take this idea
to its logical conclusion and formulate the fingerprint design as an
optimization problem which maximizes variance. Ironically, this ex-
periment also indicates that the 2× 2 filters in the Philips fingerprint
is one of the worst possible selections of filters, since it only adds
and subtracts immediately adjacent pixels!

The useful information rate metric matches our understanding of
good fingerprint design. But does it also match system-level metrics
of performance?

Figure 4 shows the system-level accuracy for the same experi-
ment. Here, we created a database of fingerprints for 977 files total-
ing approximately 40 hours of audio data. We generated 500 noisy
queries by randomly selecting 10 second segments and adding noise
at a desired SNR. To compute a score for each item in the database,
we used the search method described by Wang [6]. The accuracy
in figure 4 refers to the percentage of queries that were identified
correctly (i.e. the true match had the highest score). This is one of
the common metrics used to measure system-level performance, as
described in section I.

There are two things to notice when we compare figures 3 and 4.
First, we notice that useful information rate and overall system-level
accuracy correlate directly when assessing the relative performance
of various fingerprint designs. Within each grouping of bars (in both
figures), the performance improves as the filter width increases. In
this way, we can compare fingerprint designs more efficiently using
useful information rate rather than system-level performance. Note
that figure 4 required more than 1000 times more data and signif-
icantly more setup and implementation than figure 3. Second, we
point out that these two metrics do not correlate directly in terms of
absolute performance. For example, notice that a fingerprint filter
width of 32 at 10dB SNR has higher system accuracy than a finger-



Fig. 4. Effect of filter width on system-level accuracy.

print filter width of 2 at 20dB SNR. In contrast, a fingerprint filter
width of 32 at 10dB SNR has a much lower useful information rate
than a fingerprint filter width of 2 at 20dB SNR. Again, we point out
that the absolute performance numbers depend upon many factors
besides fingerprint design, such as the database size and the amount
of redundancy built into the search mechanism.

Figures 3 and 4 demonstrate that useful information rate and
system-level accuracy correlate directly in evaluating fingerprint de-
signs. The useful information rate metric is preferable because it
requires much less data and almost no setup to compute.

5. THRESHOLD SELECTION

We have examined the number of bits and how to compute each bit.
We now consider the last remaining piece of the design puzzle: the
thresholds. In the original Philips fingerprint, the threshold is set to
0 (i.e. the result of adding and subtracting pixels is compared to 0 in
order to determine the bit value). Intuitively, it seems that we should
set the threshold to the median in order to maximize entropy.

Again, we can quickly test this hypothesis by evaluating vari-
ants of the original Philips fingerprint design on our small sample
set. These variants all use the same original set of 2 × 2 checker-
board filters, but are thresholded at different quantiles of the feature
distribution (where, for example, the 50% quantile corresponds to
the median).

Figure 5 shows the results of this experiment. Each curve shows
the useful information rate of the various designs at a given SNR. We
see that at high and medium SNRs, the median does indeed maxi-
mize the useful information rate, as our intuition suggests. However,
we notice that at low SNRs, the useful information rate with a me-
dian threshold actually becomes the worst of all the other designs.

Why would you ever set your threshold to something other than
the median? These experiments suggest that there are situations
when it is better to set your threshold differently. When the noise

Fig. 5. Effect of threshold selection on fingerprint effectiveness.

is really bad, there is no point in trying to maximize the entropy any-
more, since the accuracy is too low. In these cases, it is better to
sacrifice entropy in order to boost accuracy, and this can be achieved
by moving the threshold towards one of the tails of the distribution.
The feature will fall on one side of the threshold most of the time
(resulting in low entropy), but when it does occasionally fall on the
other side of the threshold, it is more likely to suggest that the un-
derlying (clean) feature value actually does fall in the tail of the dis-
tribution. So, our experiments do not change our design decision of
setting the threshold to the median, but it does provide more insight
into the factors at hand.

6. CONCLUSION

We have proposed a metric called useful information rate that di-
rectly measures the effectiveness of an audio fingerprint design on
a set of clean and noisy audio. We show that with minimal setup,
effort, and computation, the metric can be used to quickly assess the
fingerprint’s performance. Useful information rate has a very clear
and satisfying interpretation from an information theory perspective,
and we demonstrate that it correlates directly with system-level per-
formance in assessing fingerprint effectiveness. Providing this im-
mediate feedback allows a researcher to iterate quickly and build
greater understanding and intuition of good fingerprint design.

7. REFERENCES

[1] “Shazam,” Available at www.shazam.com, Oct 2014.

[2] “SoundHound: The most immersive music search, discov-
ery and play experience on mobile,” Available at www.
soundhound.com, Oct 2014.

[3] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting
system,” in Proceedings of the International Society for Music
Information Retrieval (ISMIR), 2002, pp. 107–115.



[4] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for
music identification,” in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), 2005,
vol. 1, pp. 597–604.

[5] P. Viola and M. Jones, “Robust real-time face detection,” Inter-
national Journal of Computer Vision, vol. 57, no. 2, pp. 137–
154, 2004.

[6] A. Wang, “An industrial strength audio search algorithm,” in
Proceedings of the International Society for Music Information
Retrieval (ISMIR), 2003, pp. 7–13.

[7] S. Baluja and M. Covell, “Audio fingerprinting: Combining
computer vision data stream processing,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2007, vol. 2, pp. 213–216.

[8] S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based
audio fingerprinting,” Pattern Recognition, vol. 41, no. 11, pp.
3467–3480, 2008.

[9] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel,
A. Smeaton, W. Kraaij, G. Quénot, et al., “TRECVID 2011-an
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