Bode Plots of first and Second Order Systems

First order circuits

RC.gif

As $H_R(j\omega)$ can be written as:

$\displaystyle H_R(j\omega)= \frac{1}{j\omega \tau+1} j\omega \tau$ (532)

The first term is just $H_C(j\omega)$. Now the log-magnitude is:

$\displaystyle Lm\;H_R(j\omega)
=20\log_{10} \left\vert \frac{1}{j\omega \tau+1}...
...left\vert j\omega \tau \right\vert
=Lm\; H_C(j\omega) +20\log_{10} (\omega\tau)$ (533)

The first term is the same as $H_C(j\omega)$ and the second plot is a straight line with slope of 20 dB/dec. at $\omega=\omega_c=1/\tau$, the first term is -3 dB and the second is 0 dB. The phase plot is:

$\displaystyle \angle H_R(j\omega)=\angle \left(\frac{1}{j\omega \tau+1}\right)+\angle j\omega \tau
=\angle H_C(j\omega)+\frac{\pi}{2}$ (534)

In the plots below, $\tau=0.01$, $\omega_C=100$ rad/sec.

bodeplot1storder1.gif

Define $\omega_c=1/\tau=1/RC$ as the cut-off frequency, then when $\omega=\omega_c$, we have $\omega\tau=1$, and $\vert H_R(j\omega)\vert=\vert H_C(j\omega)\vert=1/\sqrt{2}$, i.e., $\omega_c$ is the half-power point, where $\vert H(j\omega)\vert$ is -3 dB.

Second order circuits

RCL.gif

bodeplot2ndorderline.gif

In the following plots, $\omega_n=100$ rad/sec and $\zeta=0.05$. At $\omega=\omega_n$, $20\log_{10} (2\zeta\omega_n^2)=20\log_{10} 1000=60$ dB, and $20\log_{10}(\omega_n^2)=20\log_{10} 10,000=80$ dB.

bodeplot2ndorder.gif

Example, a Band-pass filter:

opamp4b.gif

$\displaystyle H(j\omega)=-\frac{Z_2(j\omega)}{Z_1(j\omega)}
=-\frac{R_2\vert\ve...
...C_1)/j\omega C_1}
=-\frac{j\omega \tau_3}{(1+j\omega \tau_1)(1+j\omega \tau_2)}$ (543)

where $\tau_1=R_1C_1$, $\tau_2=R_2C_2$, $\tau_3=R_2C_1$.