Problem Set 5

February 18, 2015

$\mathbf{1}$

1.1

A MOSFET with its drain connected to its gate is referred to as a "diode-connected" device. Derive the I-V characteristic of a diode connected device. Include channel length modulation. Refer to the voltage across the two terminals as V and the current between them as I.

1.2

Make a small signal model for a diode connected device. Express your model using only the variables V, I, λ and V_{th} .

1.3

If the drain-gate of a diode-connected device is attached to the gate of another MOSFET of a different width, what is the ratio of the currents in the MOSFETs? This arrangement is pictured in Figure 1.

1.4

Would a current be applied at I2 to have the same behavior as in question 1.3? Why or why not?

1.5

Draw a PMOS equivalent of the circuit from question 1.3.

$\mathbf{2}$

This question is concerned with Figure 2. r and c are the wire resistance and capacitance per unit length, L_w is the length of the wire. The NMOS in the first transistor has a width of W. As a designer, you have control of V_{dd} , K, and to some extent L_w .

2.1

What is the delay of the system, t_p ? You may leave your answer in terms of R_{0n} .

2.2

What is the dynamic energy consumption per cycle of the system, E_{dyn} ?

Figure 1: Diode connected device sharing voltage with another gate.

Figure 2: A digital system.

$\mathbf{2.3}$

What is the leakage energy consumption per cycle of the system, E_{leak} ? You may leave your answer in terms of t_p .

$\mathbf{2.4}$

What is the sensitivity of the system to L_w ?

$\mathbf{2.5}$

What is the sensitivity of the system to K?

2.6

What is the sensitivity of the system to V_{dd} ?

2.7

Given this information, can you make any assertions about the correct values for L_w , K and V_{dd} ? Specify the design point at which you are making those assertions.