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1.1

(3 points) Figure 1a is the transfer characteristic of an amplifier. If it has an input referred noise
density of NkT∆f (in units of V/Hz0.5), what is its dynamic range? Assume it is a first-order
system with a bandwidth of ω.

Solution: Let’s examine the maximum and minimum signals that can be resolved at the output
of this amplifier. The maximum signal is limited by signal swing, it’s zero-to-peak value is Vo,sw.
The minimum signal is limited by the total noise of the system. The input noise density is referred
to the output by the gain squared, note that I included the system’s first order roll-off in its gain.

v2on =

∣∣∣∣Vo,sw/Vi,sw1 + s/ω

∣∣∣∣2NkT∆f (1)

If we apply a quick noise integral we find

v̄2on =

∫ ∞

0

v2on =
1

4
NkTω(Vo,sw/Vi,sw)2 (2)

The dynamic range is given by the ratio of the maximum input signal – the RMS swing – to the
minimum signal – the total noise voltage (which is an RMS value). Note that v̄2on is a measure of
variance, so we need to take the square root to get v̄on in this equation:

DR =
Vmax,rms

v̄on
=

Vo,sw/
√

2
1
2

√
NkTωVo,sw/Vi,sw

=
Vi,sw√
1
2NkTω

(3)

Note that this result depends, as we might expect, on the ratio of the maximum input swing and
the total input referred noise.

1.2

(3 points) Figure 1b is the transfer characteristic of an ADC. What is it’s dynamic range?
Solution: The dynamic range is the ratio of the maximum voltage to the minimum voltage. In

an ADC that is always the number of steps. Accordingly, this has a DR of 255.

1.3

(4 points) If the amplifier’s output is connected to the ADCs input, what is the dynamic range of
the composite system? Assume that

√
NkTω = Vi,sw/20.

Solution:The maximum zero-to-peak signal the ADC can accept is a code of 128, which cor-
responds to a swing of 4Vo,sw on the ADC input. That is much bigger than the amplifier, so the
maximum zero-to-peak input swing is set to Vo,sw by the amplifier.
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The minimum signal is either the size of the ADC LSB, Vo,sw/32, or the RMS noise. Substituting
the relationship given in the question in the expression for RMS noise, we find the RMS noise is
Vo,sw/40, so the minimum signal is set by the ADC LSB.

DR =
Vo,sw/

√
2

Vo,sw/32 · 1/2 · 1/
√

2
= 64 (4)

Note that it’s more correct to say that the minimum signal is set by the sum of quantization
noise (a concept we’ll cover shortly) and input noise, but taking the maximum is the approximation
I expect you to use right now. However the maximum is a bad approximation in this case since our
RMS noise voltage is almost the same size as our LSB.

2

2.1

(3 points) Find the half-power bandwidth of each of the structures in Figure 2 if a signal is injected
at node x and the output is measured at node y.

Solution:We will use the method of impedance to find the transfer function from x to y, then
find a bandwidth by pattern matching to canonical first or second order transfer functions. Note
that each of these circuits is a voltage divider. Note also that we have to use the quality factor of
circuit iii to find it’s badwidth: Q is defined as the half-power bandwidth divided by the natrual
frequency.

Vyi
Vxi

=
1/Cs

R+ 1/Cs
=

1

1 +RCs
→ ωi = 1/RC rad/s (5)

Vyii
Vxii

=
Ls

R+ Ls
=

1

1 + Ls/R
→ ωii = R/L rad/s (6)

Vyiii
Vxiii

=
1
Cs

RLs
R+Ls + 1

Cs

=
R
Cs + L

C
R
Cs + L

C +RLs
=

R+ Ls

R+ Ls+RCLs2
=

1 + Ls/R

1 + Ls/R+ LCs2
(7)

→ ω0,iii =
√

1/LC, (8)

ω0,iiiQ = R/L→ Q = R
√
C/L, (9)

ω

∆ω
= Q→ ∆ωiii = ω0,iii/Qiii = 1/RC rad/s (10)

1 point for each correct bandwidth.

2.2

(3 points) If a digital system were sampling node y, what would the throughput of the digital system
need to be for real time processing of the samples without any loss of information? Assume the
signal is “band-limited” by the bandwidth you found in the first part of this problem. For circuit iii,
assume that Q is high and that our desired operating point is at resonance, so that the half power
bandwidth is given by the falloff from the resonant point.

Solution:”Band-limited” should be a clue to think of the Nyquist rate. The first two circuits
have a simple bandwidth from 0 to ω, so their Nyquist sampling rate are ωi/π and ωii/π respectively
– we double the frequency to honor Nyquist and then divide by 2π to convert to Hz. Sampling rates
and througput are given in samples/second or Hertz, which is why we do that conversion.

There are two possible answers to the third system. One is doubling the highest frequency we
care about. But recall that the ∆ω is a little bit misleading: though it is the total bandwidth, the
natural frequency isn’t aritmetically halfway between the 3 dB cutoff frequencies. i.e.: ωhi 6= ω0+∆ω.
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Instead it is geometrically bettween the upper and lower frequncy. As a result, we have to solve the
following system of equations to figure out the maximum frequency:

∆ω = ωhi − ωlo and ω0 =
√
ωhiωlo (11)

∆ω = ωhi −
ω2
0

ωhi
(12)

0 = ω2
hi −∆ωωhi − ω2

0 (13)

ωhi =
∆ω

2
+

√
∆ω2

4
+ ω2

0 (14)

so ωhi,iii =
1

2RC
+

√
1

4R2C2
+

1

LC
(15)

The frequency we need to sample at is ωhi,iii/π.
It is also possible to undersample the bandpass filter, which is the second and arguably more

correct way to answer this question. It involves invoking the Bandpass Sampling theorem. If you
did that, give yourself a pat on the back and assume that you’re right.

Note that 2 · 2π ·ω0,iii and 2 · 2π ·∆ωiii are incorrect answers. Neither answer guarantees sam-
pling everything in the bandwidth.

The throughput must be the same as the sample rate to process samples in real time.
1 point for each correct sampling frequency. Don’t penalize yourself for the same mistake more

than once: if you forgot to multiply by 2π to all three equations then only take off one point.

2.3

(4 points) For each circuit, find the total noise at node y if a noise voltage source of value v2n =
NkT∆f is attached between node x and ground. Treat the resistors in circuits i and iii as “noisy”
and treat the resistor in circuit ii as ideal.

Solution: For circuit i, we should model the resistor noise source as a series voltage noise of value
4kTR∆f . This means the noise source attached to node x is in series with the resistor noise source,
and the two can simply be added together. This means the effective input noise is (4R+N)kT∆f .
This noise source is multiplied by the square of the transfer function we found in the first part of
this problem and integrated:

v̄2n,y,i = (4R+N)kT

∫ ∞

0

∣∣∣∣ 1

1 + sRC

∣∣∣∣2 df = (4R+N)kT
ωi

4
=

(4R+N)kT

4RC
=

(
1 +

N

4R

)
kT

C
(16)

Note that the contribution from the resistor itself is kT/C and is independent of R. Only increasing
C can reduce the value of resistive noise. Also note that the solution is a multiple of kT/C, the
multiplier in front of kT/C is abbreviated nF (in this case nF = 1 + N/4R) and is related to the
noise figure of an amplifier.

Circuit ii is also a first order system and the noise source at the input will be shaped by the
transfer function in the same way as in circuit i:

v̄2n,y,ii = NkT

∫ ∞

0

∣∣∣∣ 1

1 + Ls/R

∣∣∣∣2 df = NkT
ωiii

4
=
NkTR

4L
(17)

We assume there is no noise in the resistor for circuit ii, so this is all the work we need to do.
For circuit iii, we should model the resistor noise as a parallel current source and find a new

transfer function from that current source to the output. By superposition, node x will be grounded
when we find that transfer function, which means the circuit will be a parallel RLC combination.
The tranfer from the resistors noise source to the output will be the impedance of a parallel RLC
tank, which we find by first finding the admittance of the tank (since parallel admittances add
together) and then inverting it:

GRLC = Cs+
1

Ls
+

1

R
→ ZRLC =

1

GRLC
=

1

Cs+ 1
Ls + 1

R

=
Ls

1 + Ls/R+ LCs2
(18)
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(a) Amplifier Transfer Function (b) ADC Transfer Function

Figure 1: Transfer functions for dynamic range calculation

Figure 2: Noise and Bandwidth Circuits.

The sum of the noise densities at the output is as follows:

v̄2y,n =

∫ ∞

0

v2n

∣∣∣∣VyVx (s)

∣∣∣∣2+i2r|ZRLC(s)|2 =

∫ ∞

0

NkT

∣∣∣∣ 1 + Ls/R

1 + Ls/R+ LCs2

∣∣∣∣2 ∆f+
4kT

R

∣∣∣∣ Ls

1 + Ls/R+ LCs2

∣∣∣∣2 ∆f

(19)
Terrible pattern matching, factoring and substitution follows to give the result

v̄2y,n = kT

[
Nω0Q

4

(
1 +

ω2
0

ω2
z

)
+

4L

RC
· ω0Q

4

]
Note we need to multiplyby ωz/ω0 in the second term

(20)

= kT

[
NR

4L
+
NR

4L
· L

2/R2

LC
+

4L

RC
· R

4L

]
(21)

=
kT

C

(
NRC

4L
+
N

4R
+ 1

)
(22)

1 point for correct answer for circuit i, 1 point for correct answer for circuit ii. For circuit iii, 1
point for noise integral setup and 1 point for evaluation.


