Comm, cleanup
 - slope detector
 - IQ demod.
 - ASK/AN or FSK/FM

Mixers
 - passive vs. active
 - conversion gain
 - linearity
 - noise temp

Phase noise
 - what is
 - conversion to voltage
 - spectrum

Comm example
 - do spreadsheet
 - direct down

Some topics to clean up about comm systems — more demodulation

- IQ demodulation

\[
\begin{align*}
M & \\
I & \\
Q & \\
\frac{1}{2} & \\
\frac{1}{2} & \\
\frac{1}{2} & \\
\text{relies on demod having same phase as mod. or I leaks into Q}
\end{align*}
\]

- FM demodulation

\[
\text{L} \text{LL uses phase detector e.g.: } \ \text{V}_{\text{o}}
\]

\[
\text{I} \text{ can also use slope detector to change amp by frequency}
\]

- Very non-linear

\[
\text{L} \text{ sample it and let software/dsp do frequency counting}
\]

Shift keying is digital modulation
 - ASK is passive
 - FSK is active

AM:
 - \(M \)

ASK:
 - \(m(t) \)

FM:
 - smooth change in \(f

FSK:
 - digital changes in \(f \)
Mixers

- 2 types: active vs. passive - different needs
 - passive more popular b/c of higher linearity

- Important specs: conversion gain - \(G = \frac{P_{@\text{IF}}}{P_{@\text{RF}}} \)

 \(L \) conversion gain is negative in passive mixers

 \(L \) may depend on \(L_0 \) level, esp. @ small \(L_0 \), will vary w/ \(f_{LO} \)

- Isolation

 \(I_{\text{RF-LO}} = \frac{P_{@\text{RF}}}{P_{@\text{LO}} \mid \text{no signal}} \)

 \(P_{\text{IF-LO}} = \frac{P_{@\text{IF}}}{P_{@\text{LO}} \mid \text{no signal}} \)

 \(L \) how much \(L_0 \) leaks into other ports

 \(L \) big deal b/c \(L_0 \) often very high power

 \(L \) re-ordinates out of antenna & creates intermodulation - bad!

- Linearity - mixers have \(I_{\text{IP}2} \) & \(I_{\text{IP}3} \)

 \(L \) \(I_{\text{IP}2} \) is a really big deal in direct downconversion

 b/c mixer feeds baseband directly

- Noise temperature/Noise figure

 \(L \) for passive noise temp is \((1/\text{Loss} - 1) T \) like any other lossy passive

 \(L \) Noise figure is tricky b/c it can depend on the signal @ RF

\[\begin{align*}
\text{M} \times \uparrow \uparrow & = \text{M} \quad \text{M} \quad \text{double side band (DSB) signal} \\
\text{tricky architecture} & \Rightarrow \uparrow \quad \text{A} \quad \text{single side band (SSB) signal}
\end{align*} \]

\(L \) when mixing down get noise from image, desired band \& mixer itself

\(L \) but may only get signal from 1 sideband

\(L \) both SSB \& DSB Noise figures exist, be careful
Comm. system analysis example

- FM signal w/ nearby blocker received by antenna

\[\omega_n = 1 \text{kHz} \]
\[\Delta \omega = 100 \text{kHz} \]

- pick an architecture — let's go direct down conversion

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \]

- Analyze w/ a table

<table>
<thead>
<tr>
<th>stage</th>
<th>description</th>
<th>(P_{\text{signal}})</th>
<th>(P_{\text{blocker}})</th>
<th>(P_{\text{INJ}})</th>
<th>(T_{\text{i}n})</th>
<th>(f_{\text{i}})</th>
<th>(f_{\text{out}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tx</td>
<td>0 dBm</td>
<td></td>
<td></td>
<td></td>
<td>190 kHz</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Path loss</td>
<td>-80 dBm</td>
<td>-60 dBm</td>
<td></td>
<td></td>
<td>210 kHz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RX antenna</td>
<td>-88 dBm</td>
<td>-60 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Amp</td>
<td>-38 dBm</td>
<td>-20 dBm</td>
<td>based on TIP3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>based on (\mu)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BPF</td>
<td>-35 dBm</td>
<td>-60 dBm</td>
<td>same</td>
<td>(\approx 420 \text{kHz})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate system temp @ end