Talking about nonlinearity

- High power signals can sneak to other frequencies & swamp ours
- Need to be mindful in order to pick filters etc.

Types
- **Harmonic distortion** - one tone test \(i.e. V_{in}(t) = V_i \cos(\omega t) \)
 - Appears \(\leq 2\omega + 3\omega \) & 3rd order falls as \(\omega \rightarrow \text{gain compression} \)
 - Measure \(P_{1dB} \) to describe HD2 & HD3 in units of dBc
- **Intermodulation** - two tone test \(i.e. V_{in}(t) = V_1 \cos(\omega_1 t) + V_2 \cos(\omega_2 t) \)
 - Appears \(\leq 2\omega_1 + \omega_2 \) or \(2\omega_2 + \omega_1 \)
 - Describe w/ IM2 or IM3 in dBc or III2 = III3

- Need to clean up intermodulation: defined when input voltages are equal
 - Cubic in product \(3g_3 V_i^2 \cos(\omega t) \cos^2(\omega_3 t) = \frac{3g_3^3}{4} \left(2 \cos(\omega t) \cos(\omega_3 \omega t) \right) \)
 - \(IM_3 = \text{amp in-band product w/ } V_1 = V_2 = \frac{3g_3^3}{4} \frac{V_i^3}{\omega_1 V_i} = \frac{3g_3^3}{4} \frac{V_i^2}{\omega_1} \text{ (at } +10\text{ dB}) \)
 - \(IM_2 \): similar \(= \frac{g_2}{\omega_1} V_i; \text{ (at } +6\text{ dB}) \)

Summary table

<table>
<thead>
<tr>
<th>Input Power</th>
<th>Gain Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{1dB})</td>
<td>(P_{1dB} + 1dB)</td>
</tr>
<tr>
<td>(V_i)</td>
<td>(V_i)</td>
</tr>
</tbody>
</table>

\[
IM_2 = \frac{g_2}{\omega_1} V_i; \quad \text{III } = \text{III } + 0\text{dB}
\]

\[
IM_3 = \frac{3g_3^3}{4} \frac{V_i^2}{\omega_1}; \quad V_i @ III2 = \frac{\omega_2}{\omega_1}
\]

\[
IVP = \frac{\omega_3}{\omega_1}; \quad V_i @ III3 = \sqrt{\frac{g_3^3}{\omega_1^2} \frac{1}{4}}
\]