Lecture 20 - Noise examples, cascades, quantization

Excessed Noise Example
- Noise Temp. vs. Voltage
- Build to Noises
- Attenuators
- SNR 0 dB in here

Talking about noise

- purely random corruption of signals (not many common misniers)
- so far we're focusing on thermal noise ... random e- fluctuation
- $\frac{kT}{w}$ of Aug E of kT
- Gaussian
- $\frac{1}{w}$ noise is thermal it's distributed over wide f
- creating a power spectral density: noise power per Δf
- P power = variance ... way of describing how wide noise is
- need language (for E_n)

$$P \rightarrow \frac{(X\sigma E_n)^2}{BPP} \rightarrow \frac{P}{BW} \rightarrow$$

- σE_n total noise power
- $\bar{V}_n = \sqrt{\sigma E_n}$ is std. dev of noise
- Affected by BW, so hard to add up.

- one crucial metric we haven't covered is signal-noise ratio (SNR)

$$\frac{P}{\sigma E_n^2}$$

- used in a figure of merit for amplifiers can noise typer/factor

- noise factor $n_s = \frac{SNR_i}{SNR}$ is always ≥ 1
- noise figure $NF = 10 \log n_s$
Let's look at a typical noise example

\[T_0 = \frac{1}{4 \sqrt{\text{B}_{	ext{in}}}} \]

- **Input**
 - \(V_{\text{in}} = -50 \text{dBm} \)

- **k**: amplifier gain

- **T**: switch
 - \(T_{\text{ref}} \)

- **Gain**:
 - LNA: \(G \) dB

- **Sections**
 - Attenuator: \(T = 10^{-\frac{3}{2}} \) dB
 - \(T = 10^{-\frac{3}{2}} \cdot T \)

- **Gain Bandwidth Product**
 - \(G \cdot \text{BW} = 100 \text{Hz} \)

- **Noise Sources**
 - \(N_{\text{in}}^2 = V_{\text{in}}^2 \)
 - \(N_{\text{out}}^2 = V_{\text{out}}^2 \)

- **Power Gain**
 - \(P = \frac{V_{\text{out}}^2}{V_{\text{in}}^2} \)

- **Noise Density**
 - \(B_{\text{in}} = 1 \text{MHz} \)

- **Noise Temp**
 - \(\text{SNR} = \frac{V_{\text{in}}^2}{T_0 \cdot k \cdot B_{\text{in}}} \) (assuming no resistors or gain)

- **Noise加 at each stage**
 - Stage 1:
 - \(-50 \text{dBm} \)
 - \(N_{\text{in}}^2 \)
 - \(\approx 290 \)
 - \(B_{\text{in}} = 1 \text{kHz} \)

 - Stage 2:
 - \(-51 \text{dBm} \)
 - \(\text{IL} \cdot N_{\text{in}}^2 + N_{\text{out}}^2 \)
 - \(= 254.5 \)
 - \(10 \cdot (254.5) + 38 \)
 - \(2603 \)

 - Stage 3:
 - \(-41 \text{dBm} \)
 - \(G(\text{IL} \cdot N_{\text{in}}^2 + N_{\text{out}}^2) + N_{\text{out}}^2 \)
 - \(2603 \cdot 0.5 + 290 \)
 - \(1591.5 \)
 - \(3000 \cdot 1591.5 \)

 - Stage 4:
 - \(-44 \text{dBm} \)
 - \(\text{SNR} \)
 - \(1.8 \times 10^6 \)
 - \(1.8 \times 10^6 \)

 - Stage 5:
 - \(-16 \text{dBm} \)
 - \(1.59 \times 10^6 \cdot 0.63 + 170 \)
 - \(1.00 \text{e}^6 \)
 - \(1.8 \times 10^6 \)

- Joint noise
 - \(e^{-1} = 1 + T_{\text{ref}} \)

- Noise at end matters much less!

- Capture by "rehearing" noise
- Anything in the near field can capacitively load an antenna
 - adds cap load & changes effective length

- Antenna is a lumped element.

- \(L \) drive \(V \) ideal voltage src is possible
 - \(L \) is in L law here, adds src impedance

- \(L = C \) of antenna related to velocity \(v = \lambda / 2 \) ... capacitance \& inductance/length

- \(L \) and \(\frac{i}{\sqrt{L C}} \) tell you resonant freq of antenna

- \(L \) so \(\frac{i}{\sqrt{L C}} \approx v_0 \) \(\Rightarrow \)
 - \(C = \frac{2\pi \lambda}{2\pi} = \frac{c}{\sqrt{L C}} \)
 - \(\lambda = \frac{1}{\sqrt{L C}} \)