Midterm Review

Aperture Gain

Polarization

Dipole

Midterm on Thursday

1 hr, no calculators, 1 page crib sheet, front/back

I'm trying to ramp difficulty - concept vs. analysis

Time/point management: try 3 of 4.

Topics:

- T. lines
 - lumped vs distributed
 - \(\delta = \alpha + j\beta \)
 - phase, velocity, \(Z_0 \)

- Reflections
 - \(\Gamma \)
 - \(\Gamma(\alpha) + Z(\alpha) \)
 - VSWR

- Smith Charts
 - \(\text{data} \leftrightarrow Z_0 \)

- S-parameters
 - \(Z \) matching
 - \(Q \)

- \(\Pi, \Omega, \Lambda \)

- \(\text{Also filters} \)

* We started looking at antennas

- Radiation is caused by phase differences across lossless element

\[V_0 \rightarrow |\begin{array}{c} \text{kvoe} \end{array}| \rightarrow |\begin{array}{c} \text{real impedance} \end{array}| \rightarrow \text{field around wire} \]

- Need long enough waves to make phase difference - \(\lambda/4, \lambda/2 \) ...

- Radiation power must fall off as \(1/r^2 \) \(\Rightarrow \) field as \(1/r \) \((\mathbf{EoA}) \)

- Radiation around point charge is \(1/r^2 \) for \(\mathbf{E} \), called receivable field

- Energy into \(\mathbf{E} \) out of field

\[\frac{1}{2} \pi \frac{0.061}{20^2} \frac{20^2}{20} \]

* r > D \(\Rightarrow \lambda \) also needed

* Alternative data of \(1/8 \) for...
Predict power Xfer between two antennas

\[
P_{RX} = \frac{P_{TX}}{4\pi r^2} \cdot A_{RX} \cdot D_{TX}(\theta, \phi) \cdot 2_{TX} \quad \text{loss}
\]

\[
= P_{TX} \cdot G_{TX}(\theta, \phi) \cdot G_{RX}(\theta, \phi) \cdot \left(\frac{\lambda^2}{4\pi r^2}\right) \quad \text{with loss}
\]

Aperture of isotropic radiator is \(\frac{\lambda^2}{4\pi} \rightarrow \text{thermodynamics} \)

Receive gain is \(G_{RX} = \frac{A_{RX}}{\lambda^2/4\pi} \rightarrow \text{how much noise do you capture?} \)

Same as TX gain..."sensitive" in the direction you transmit

Large aperture \(\rightarrow \) high gain \(\rightarrow \) narrow beam width

Polarization

In what is \(\hat{E} \) compare \(\mathbf{N} \) vs. \(\mathbf{V} \)

Orientation of \(\mathbf{E} \) or \(\mathbf{H} \) wave, describe

Almost no voltage @ RX antenna in this case

Link budget

To express Friis in dB

\[P_{RX} = P_{TX} + G_{TX} + G_{RX} - PL \]

As we go forward, we'll add noise & linearity budgets to compute overall comm. system goodness.
Antenna Examples

- patch antennas

- use a t. line to feed.

- What is $Z_{antenna}$?

 $Z_{antenna}$ voltage patterns excited by feed line \rightarrow standing waves in x

 L_x usually make $L_x < L_y$ so only 1 dir standing wave

 $Z = V/I$