We are finishing matching networks & starting antennas.

A few matching topics that I need to finish or schedule:

- **π & T networks**

 \[
 C_1 \quad C_2 \quad \parallel \quad R_2 = C_1 \quad \parallel \quad C_2 \quad \parallel \quad R_2
 \]

 To use them to set Q separately, \(R_{in} / R_L \) linked in L-match.

 - Analyze with series-parallel transform:
 \[
 R_P = (Q^2 + 1) R_s
 \]
 \[
 X_P = \frac{Q^2 + 1}{Q^2} \times X_s
 \]
 Parallel R bigger than series Q always \(\rightarrow \) step-up L \(\rightarrow \) step-down.

 - In π step down & then up resistance to intermediate “image resistance”:

 - Can evaluate \(Q_{total} = \frac{X_1 + X_2}{2R_l} = \frac{1}{2} (Q_1 + Q_2) \)

 - \(Q_1 = \sqrt{\frac{R_L}{R_2}} - 1 \) \(\rightarrow \) \(Q_2 = \sqrt{\frac{R_1}{R_S}} - 1 \) \(\rightarrow \) \(Q_{total} \) is \(\frac{1}{2} Q_1 \) \(\rightarrow \) \(Q_{total} \)

 - Pick total Q, then design 2π L-match for \(Q_{total} = Q_1 + Q_2 \).

 - Merge parasitics into matches – e.g.:

 - Or ring them out – e.g.:

 - **Narrow vs. broad match**

 - **Tapped inductor/capacitor**

 \[
 \begin{align*}
 V_{in} & \rightarrow \sin \quad \frac{V_{in}}{C_1} = \sin \quad \frac{V_{in}}{C_2} \\
 C_2 & \quad \parallel \quad R_L \\
 V_0 & = \frac{V_{in}}{C_1 + C_2} = k \times V_{in}
 \end{align*}
 \]

 \[
 R_{in} = \frac{R_L}{k^2} \quad \text{(} k \lt 1 \text{ so cost} \quad \text{of} \quad R_L \text{ value)}
 \]

- **Tapped Inductor or capacitor**

 \[
 P_{in} = R_{in} \times V_{in} \quad \text{and} \quad P_{out} = \frac{V_o^2}{R_L}
 \]
Antennas!

1st topic in comm. systems — concerned w/ on board for 1st 1/2 class

Why do wires decide to radiate?

Related example: \(V_0 \) \(\text{e}^{\theta \phi} \) \(kV_0 \) \(\phi \)

\[i = V_0 (1 - ke^{\phi}) \]

\[Z_{eq} = \frac{1}{j\omega C (1 - ke^{\phi})} \]

How much power drawn from \(V_0 \)?

\(\rightarrow \) real \(Z_{eq} \) implies real power

\(\rightarrow \) can get from \(\frac{1}{2} \text{Re} V^2 I^2 \) too

So suck by \(kV_0 \) source

Can see same effect w/ t. line — delay picture or smith picture

\[V = V_0 e^{j\beta z} \]

— Real input impedance

— Where does power go?

Resistive component of \(Z \) called radiation resistance

Power dissipated in fields surrounding wire (does work on field of other?)

Poynting Thm: \(P = \frac{1}{2} \text{Re} \mathbf{E} \mathbf{H}^* \)

Aside: how much power in ideal conductor?

\(P = 0 \) \(\mathbf{E} = 0 \) — carried in fields around conductor

Only see radiation for \(k = \lambda \) 1/4 that causes sizeable \(\phi \)

6, antennas come in 1/2, 3/4, 5/8 dimensions
what happens to power after it leaves wire

- Antenna w/ 2 spheres

\[I_1 A_1 = I_2 A_2 \quad \text{or power buildup/reduction} \]

\[I_1 \left(\frac{A_1}{A_2} \right) = \frac{4\pi r_1^2}{4\pi r_2^2} = \left(\frac{r_1}{r_2} \right)^2 \quad \text{Intensity falls as } r^2 \]

\[I \propto \frac{E_1}{2}\hat{z} \quad \Rightarrow \quad |E| \propto \frac{1}{r} \quad \text{Field falls off as } \frac{1}{r} \]

- Field must fall off as \(\frac{1}{r} \), components w/ other fall off must be reactive — can't be real power flow — \(E \propto \frac{1}{r^2} \) + \(H \propto \frac{1}{r^3} \) in near field

- Consider fields around stationary charge

- In far field is \(r \gg \frac{2D^2}{\lambda} \) + \(r \gg D \) + \(r \gg \lambda \)

- Reactive near field until \(r \geq 0.62 \sqrt{\frac{D^3}{\lambda}} \), reactive in between

- Antennas aren't isotropic — represent w/ directivity

- Imagine 2 antennas

\[P_{\text{Rx}} = \frac{P_{\text{Tx}}}{A_{\text{Rx}}} \cdot A_{\text{Rx}} \cdot D_{\text{Tx}}(\theta) \cdot \frac{1}{2} \]

\(G_{\text{Rx}} \)

\(\frac{P_{\text{Tx}}(\theta)}{EIPD} \)

\(D_{\text{Tx}}(\theta) \)

\(\text{loss in antenna} \)

\(\text{directivity} \)

\(\text{receive aperture} \)

\(\text{Equivalent isotropic power density} \)

\(\text{EIPD} \)

\(A_e = \frac{\lambda^2}{4\pi} G \)

- RX antenna aperture tricky

\[P_{\text{Rx}} = \frac{P_{\text{Tx}} G_{\text{Tx}} G_{\text{Rx}}}{4\pi} \quad \Rightarrow \quad P_{\text{Rx}} = \frac{P_{\text{Tx}} G_{\text{Tx}} G_{\text{Rx}}}{4\pi r^2} \]

\(\lambda^2 \)

\(\text{called path loss} \)

\(1.55 \)