- Filter description
- Filter Synthesis
- Transform
- Relation to s parameters
- Laplace Picture
- 2-port U/VNA

We're talking about s-parameters - generalization of Π to 2-port systems. Going to talk more.

- Need to go over filters for design project... ok s-parameter example.

- Filters are linear systems that are frequency selective.

\[w_1, w_2, w_0, w_{s1}, w_{s2} \]

\[0 \text{dB} \]

- pass band
- stop band
- filtering region
- transition region

\[\begin{align*}
\text{insertion loss} & \quad \text{stop-band rejection} \\
(1/\text{A}^2) & \quad (1/\text{A}^2)
\end{align*} \]

- \[W_0 \] called the center frequency.

- \[w_1, w_2 \] define edge of pass band.

\[\text{in general: } w_1, w_2 \text{ often } -3\text{dB} - \frac{1}{2} \text{ power BW} \]

- Bandwidth \[\text{BW} = w_2 - w_1 \]

- Fractional BW means \[w_2/w_1 \] determined from \[W_0 \].

\[\text{eg: } \text{FBW} = \frac{\text{BW}}{w_0} \]

- \[W_0 = \sqrt{w_1 w_2} \]

\[\frac{1}{1+e^2} \]

- Max pass band deviation of \[\frac{1}{1+e^2} \] 3 min stop band \[1/\text{A}^2 \]
Lecture 12 - Filter Design

- Steepness of rolloff in transition region $\propto c_0^n$ where n is called order

L is related to # of poles used to make filter

$$\text{Filter prototype } |H(cs)|^2 = \frac{1}{1 + c^2 F(cs)}$$

F function $F(cs)$ is polynomial or ratio of polynomials w/order n

F specific function determines shape of filter

F order \rightarrow poles \rightarrow Energy storage \leftrightarrow # stored states in memory

Butterworth

Chebyshev I

Chebyshev II

Elliptic

$H(cs)^2

\frac{F(cs)}{\left(\frac{c_0}{w_p}\right)^n}
\rightarrow$

passband edge

Chebyshev polynomial

$C_n(w_p)$

Invers Chebyshev polynomial

$1 - C_n(w_p)$

Chebyshev rational polynomial $N(cs)/D(cs)$

$-$ same

$-$ phase for these usually nots

$-$ Bessel-Thomson filters approximate linear phase (pretty well)

@ expense of ripple $F(cs)$ are Bessel functions

$-$ Butterworth often called maximally flat \sim $-$ type II Chebyshev technically flatter
- How do we make filters?

- By tradition, start w/ low pass & learn about high pass transformation

- 1st pick A, $\varepsilon \rightarrow n$ (a allowable stopband monotonicity)

$$\varepsilon = \sqrt{\frac{100}{10^6} - 1}$$

- Lowpass vs. highpass plots or equations:
 - Butterworth: $n = \frac{\ln A_s / \varepsilon}{\ln \cos \omega_p}$
 - Chebyshev: $n = \frac{\cosh^{-1} A_s / \varepsilon}{\ln \cos \omega_p}$
 - Elliptic \rightarrow elliptic integrals

- Now need to turn into circuit

- Need n energy storage elements

$$n = 3: \quad \frac{L_1}{L_2} \frac{L_3}{L_4} \quad \frac{L_5}{L_6} \quad \frac{C_1}{C_2} \frac{C_3}{C_4} \frac{C_5}{C_6} \quad \text{or} \quad \frac{L_1}{L_5} \frac{L_2}{L_4} \frac{L_3}{L_6} \frac{C_1}{C_2} \frac{C_3}{C_4} \frac{C_5}{C_6}$$

- Get component values from a filter table

- Tables normalized to $Z_{in} = 1\Omega$ & $\omega_p = 1$ rad/s

- Un-normalize Z by multiplying Z_0 by Z_0 (50 ohm)

$$L = L_0 Z_0 \quad C = C / Z_0$$

- Un-normalize ω by dividing all elements by ω_p

(recall $Z_{in} = \sqrt{\frac{1}{C}} + \omega_0 \approx \frac{1}{\sqrt{2C}}$)

Example butterworth:
Go from low pass to high pass, band pass, band stop

\[\frac{1}{\omega_0^2} \rightarrow \frac{1}{\omega_c^2} \rightarrow \frac{1}{\omega_c^2} \frac{1}{1 + \frac{BU}{\omega_c^2}} \rightarrow \frac{1}{1 + \frac{L \cdot BU}{\omega_c^2}} \]

\[\frac{1}{\omega_0 C} \rightarrow \frac{1}{\omega_c C} \rightarrow \frac{1}{\omega_c C} \frac{1}{1 + \frac{BU}{\omega_c C}} \rightarrow \frac{1}{1 + \frac{C \cdot BU}{\omega_c C}} \]

High pass Band pass Band stop

Lo band elements ~ parallel tanks open & series ring short

\(Y = 0 \) \(Z = 0 \)

\[|H(s)|^2 = |S_{21}|^2 \]

\[S_{11} \text{ goes low when } S_{21} \text{ is high} \rightarrow \text{no reflection in pass band} \]

\[\text{reflect otherwise } \frac{1}{s} \text{ lossless filters} \]

\(L \) can make lossy RC or RL ladders