Lec 11 - VNA & S-params in ckt.

*Port S&V
 - Power flow
 - Complex power
 - 2 port resistor
 - 2 port

Talking about S-parameters

- Type of 2 port parameters - expression how waves bounce off black box.

- Contrast V/2-params - talk about voltages induced by currents

\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = Z \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} \text{ (Vs)} \quad \begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} = S \begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
\]

- Measure by setting \(I_1, I_2 = 0 \)
- Measure by terminating (terminate V/open)
- \(V/2 \) to kill \(b_1 \) or \(b_2 \)

- Want to: Figure out measurement techniques & interpretation
 - Relate to circuit calculations we already knew
 - Relate to power delivery

To measure S-params we use a Vector Network Analyzer

- Relies on directional couplers
 - Split waves into fwd & rev components & more later
 - Observe reflected waves on one & fwd. waves on other for direct S-param measure
- VNA only takes good measurements when calibrated.

 To calibrate with eat. standards short, open, load, thru.

- Short to find ref. plane.

\[
S_{\text{VNA}} = \begin{bmatrix}
e^{jBz_1} \\
e^{jBz_2}
\end{bmatrix} S_{\text{OUT}}
\]

- Need to define where \(z = 0 \) is, i.e.: measure \(E_1, \phi_z \).

- Or we have a lot of excess phase: \(\phi = Bz_1 = \frac{2\pi}{\lambda} z_1 = \omega \frac{z_1}{v} \).

We will see phase plot:

\[\begin{array}{c}
\pi \\
- \pi \\
\end{array} \]

You guys — what will Smith chart look like?

- Why not open? Capacitance + radiation lead to worse results.

- Going on to PCB.

\[
\begin{array}{c}
\text{Optics: cal. in place} \\
\text{Short sets zero here}
\end{array}
\]

- Open + Load

- Source mismatch + directivity errors

- Open is an independent reflection, load should be no reflection

- thru

- Frequency response of fixtureing
- post cal checks
 - short 511 or 522
 - open 511 or 522
 - thru
 - Not as good if short cap

- control 1 & part 2 connector protector
- only screw in turtle-neck so you don't break internal pins
- debugging ~ check cables or connectors. Wibble to find bad ones
 - sanity check ... am I seeing a signal?
- when to recalibrate ~ change in sweep or cal
 - change in fixtureing

Notes on PCB parasitics - via has inductance ~ in series to ground
- pad has cap
- in short to ground.

Extract of SWA by making resonant
- @ resonance series ~ short 511, 522 ~ open
- big phase change, magnitude changes, but reflects @ 10^5 and 10^6 ohms

Can express port I & V in terms of 5 parameters
- \(V_I = V_{i1} + V_{i2} \)
- \(I_I = (V_{ii} - V_{i1})/2o \)

\[V_I = \sqrt{2o}(a_1 + bi) \]
\[a_1 = \frac{V_I + 2aI}{\sqrt{2o}} \]
\[b_1 = \frac{V_I - 2aI}{\sqrt{2o}} \]
- **Analytic power**

 - Relating S-params to ckt+
 - $S_{11} + S_{22}$ easy enough to calculate — reflection coefficients of load or port

 \[
 S_{11} = \frac{R_1 + R_2 + 2Z_0}{R_1 + R_2 + 2Z_0} - \frac{Z_0}{R_1 + R_2 + 2Z_0} \\
 S_{22} = \frac{R_2 + R_1 + 2Z_0}{R_2 + R_1 + 2Z_0} - \frac{Z_0}{R_2 + R_1 + 2Z_0}
 \]

 - Get S_{21} & S_{12} from port voltage
 \[
 Z = (Z - 2Z_0)(Z + 2Z_0)^{-1} \\
 Z = (Z - 2Z_0)(Z + 2Z_0)^{-1}
 \]

 - Formulas for $S_{21} = \frac{2Z_0 Z_{11}}{(Z_{11} + 2Z_0)(Z_{22} + 2Z_0) - Z_{22} Z_{11}}$ \\
 \[
 S_{12} = \frac{2Z_0 Z_{21}}{(Z_{11} + 2Z_0)(Z_{22} + 2Z_0) - Z_{22} Z_{11}}
 \]

 - Complex power

 \[
 P = \Re \{ I^* V \} = \frac{1}{2} |I|^2 \\
 \]

 - Need voltage & current in phase to have power e.g., imped. fdl.

 - Power in wave is $\frac{1}{2} |a|^2$ & power into 2 port is $\frac{1}{2} |a|^2 - \frac{1}{2} |I|^2 = \Re \{ V^* I \}$

 \[
 \frac{|V_{II}|}{Z_0}
 \]

 - Lossy 2 ports won't send all their power out in Z_0 as Hermitian matrices

 \[
 \]

 - E.g., 1 port

 \[
 \]

 - Predicted \Rightarrow Π_{Pin}

 - Power \Rightarrow $(1 - \Pi_{Pin})^2$

 - More to come re: S_{11}

 \[
 \]

 - Filters next time b/c led ?

- $E_{R\Omega} 518$

 Lec II - VNA + S-params in ckt.