Revisit open reflection
- doubling & doubling
- 2 waves a line

Talking about transmission lines - homes for TEM waves
- waveguides house TE/TM waves

Characteristic impedance lets us describe waves in their homes
- relates I & V at one point
 \[Z_0 = \sqrt{\frac{L}{C}} \]

Propagation coefficient lets us relate waves @ 2 points
- $\gamma = \alpha + j\beta$
- \[V(z) = V_0 e^{-\gamma z} \]
- \[t(z) = \frac{d}{dz} \]

Recall a plane wave complex exponential is $A e^{j(\omega t-kz)}$

Generalized this $V(z)$ equation to define variable reflection co-efficient and impedance $Z(z)$ & $\Gamma(z)$

Reflection coefficient discusses how a finite line interacts with a load
- $\Gamma = \frac{Z_L-Z_0}{Z_L+Z_0}$
- when $V_L = 0$

Generates a reflection where extra current has to go somewhere

Can use this wave description to write voltage on line
\[V(z) = V_0 e^{-\gamma z} + V_{0e} e^{\gamma z} \]
\[= V_0 e^{j(\omega t-kz-\frac{\gamma z}{2})} + V_{0e} e^{j(\omega t-kz+\frac{\gamma z}{2})} \]
From this we've learned 3 key skills we want to practice:

- Transmission line propagation modeling
- Calculating reflection coefficients
- Calculating line properties from geometry

-HW be hard to do by hand

-But \(Z_0 = \sqrt{\frac{1}{\lambda}} \Rightarrow V \approx \frac{1}{\sqrt{\lambda}} \)
- Know how to sketch fields + IV

Calculate \(\Gamma \) for these situations:

1. \(Z_L = \infty \)
 - Note: input voltage is \(V/2 \)
 - \(\Gamma = \frac{\infty - Z_0}{\infty + Z_0} = 1 \)
2. \(Z_L = 0 \)
 - No source impedance here
 - No reflection on incident wave \(\frac{1}{Z_0} \) lumped model
 - \(\Gamma_L = 1 \) and \(\Gamma_S = -1 \)

3. \(Z_L = \frac{Z_0}{2} \)
 - Frequency dependent
 - Complex, results in phase
 - Both OK — harder for squares

4. \(Z_L = \frac{14 \lambda - Z_0}{\sqrt{10 \lambda + Z_0}} \)

5. \(Z_L = Z_0 / \| Z_{\text{line}} = Z_0 \)
 - Load impedance is \(Z_0/\| Z_{\text{line}} = Z_0 \)
 - \(\Gamma_L = 0 \)
 - And line is \(\infty \), what about reflections?

\(Z(\lambda) \) describes impedance of terminated line away from load.
Modeling propagation
- revisit last class example, lossless line w/ open term

\[V_{in} \text{ is boundary cond. to wave eq. on t-line} \]
- per custom, set \(z = 0 \) to be load location
- Let \(V = \frac{1}{10} \frac{1}{\sqrt{s}} \)

1) \(V \)
- \(t = 0.5 \text{ ns} \)
- nothing asserted yet, no wave
- rising edge propagates then falling edge
- \(\text{sol. is } V_{in}(t - z/v) \)
- \(u \) for reflected wave, can imagine \(16 \) at \(2L \)
- not using \(V_{in} e^{-2z} \) be phase tricky

2) \(V \)
- \(t = 10 \text{ ns} \)
- just reach load

3) \(V \)
- \(t = 19.5 \text{ ns} \)
- wave just gets eaten by input term.