E151 Lecture 18 – Open and Short Circuit Time Constants

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are notes for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for attending lecture.

Lab Debrief

- AC coupling
 - We're not modeling it in our TF right now, low f will be wrong
 - step responses: see dynamics right close to edge
- Extracting Cmu and Cpi
 - assume Cce=0, Cobo=Cmu, use fT to get Cpi
 - OR, use Cibo + tau F and gm
- Some weirdness in this lab measuring rin and rout ... play around a bit
- Make sure to record phase for Bode plots
- MAKEUP LAB HOURS on Wednesday, 6-9PM

Full TF Hard (no good Zth) & Miller has issues

- Miller issues: CE specific and non-conservative, but insightful
- We Want
 - a general approximation method that works for any circuit
 - approximation to be conservative & to lend design insight
 - a technique that can be used to calculate f_low
- Open circuit time constants & short circuit time constants (O/SCTC)
 - Invented at MIT in the 60s

What are OCTC?

- Assume our transfer function has a mid-band
- Focus on finding first pole accurately (assume widely separated)
- "zero-causing caps" are going to be shorted at this frequency

Real
$$CE: Has = A_{V} \frac{(1-\frac{5}{4})}{(1-\frac{5}{4}p_{2})}$$
 Maller: $Has = A_{V} \frac{1}{1-\frac{5}{4}p_{M}} = lose in fe, use
 $DCTC: Has = A_{V} \frac{1}{(1-\frac{5}{4}p_{1})(1-\frac{5}{4}p_{2})} = A_{V} \frac{1}{1+(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}})s+...+(\frac{1}{p_{1}}p_{2}-\frac{1}{p_{4}})s}$

Has $A_{V} = A_{V} \frac{1}{(1-\frac{5}{4}p_{1})(1-\frac{5}{4}p_{2})} = A_{V} \frac{1}{1+(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}})s+...+(\frac{1}{p_{1}}p_{2}-\frac{1}{p_{4}})s}$

Has $A_{V} = A_{V} = A_{V} \frac{1}{(1+p_{2}+1-p_{3})s}$

Because tau_n*s small @ corner for n>2$

Fine, but I don't know au_i

- Can't Thevenize @ caps b/c the caps communicate in general
- Big result: $\sum_{i=0}^n \tau_i = \sum_{i=0}^n OCTC_i$ where $OCTC_i = C_i R_{th,i} | C_{k \neq i}$ open
- Exactly predicts first pole in OCTC TF
- Only include "pole-causing" caps in analysis b/c "zero causing" short

• Expect 1st order to work perfectly based on TF

Less Trivial Example

Lest tilveal example

You Try of C1 T c2 T vo=
$$\frac{1}{C_{L}S}$$
 # $\frac{1}{C_{L}S}$

VS. GCTC

OCTC, = C1 R1

OCTC_1 = C_2 (R,+R2)

 $\frac{1}{C_{L}S}$ + $\frac{1}{C_{L}S}$ + $\frac{1}{C_{L}S}$ $\frac{1}{C_{$

• Works for p1! Esp. good if tau_1>tau_2 → Miller helps

Failure Mode if Poles are Closely Spaced

Try a CE + a pattern for Cmu

• Ignore Ce and coupling caps b/c zero-causing, not pole-causing

• Cmu is more complicated:

