E151 Lecture 10 – Emitter Follower and Multistage

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are notes for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for attending lecture.

CE with Degen

• Find rin, rout, av

Me Rin

Note Vin # Vice

-Note Vin # Vice

-leads to feedback

Could do fin (or short)

$$V_{be} = \Gamma_{\Pi} V_{be} / R_{in}$$
 $V_{be} = \Lambda_{i} \cdot \Gamma_{\pi}$
 $V_{be} = \Lambda_{i} \cdot \Gamma_{\pi}$
 $V_{be} = \Lambda_{i} \cdot \Gamma_{\pi}$
 $V_{c} = (g_{m} \Gamma_{\pi} \Lambda_{i} + \Lambda_{i}) R_{E}$
 $V_{i} = V_{e} + V_{be} = I_{i} (\Gamma_{\pi} + R_{E} + BR_{E})$
 $A_{v} = \frac{-g_{R_{L}}}{r_{\pi} + (\beta + 1)R_{E}} \approx -\frac{R_{L}}{R_{E}} R_{E}$

• rout = R_L if ro presumed infinite, you will do more on your HW

Emitter Follower (Common Collector)

- We don't yet have the ability to generate a small rout
- Need a new amplifier topology. I do rin, they do av, I do rout
- rin follows same patters as CE w/ degen, rout is a new pattern (1/gm)

rin

• Same pattern as CE with degen

$$V_{60} = r_{\pi} i_{1}$$

$$I_{7} = \frac{N_{0}}{R_{E} V r_{0}} - g_{M} V_{be}$$

$$= \frac{V_{0}}{R_{E} V r_{0}} - g_{M} r_{\pi} i_{7}$$

$$V_{0} = (R_{E} V r_{0})(1 + B)$$

$$V_{1} = V_{0} + V_{be}$$

Exercise: you find av

• Gain of 1 isn't very high, level shift is nice interpretation

Colc Av
$$V_{0}=\frac{1}{4}(B+1)(RE||f_{0})$$
 from above
$$\frac{1}{4}(B+1)(RE||f_{0})}{1} = \frac{(B+1)(RE||f_{0})}{1} = \frac{1}{4} = \frac{V_{0}}{2} = \frac{V_{0}}{2$$

rout – a new small signal pattern (1/gm)

- Need to include Rs b/c not pure 1 directional
- Breaks our 2 port model a bit
- The reason why we measure rout w/ "input sourced:

Small Signal Patterns

- We've just seen two common small signal models that are used a lot
- Here are more, can analyze fast if you understand / memorize
 - Thevenize aggressively, can remove from circuit
- Watch for variations: dividers to vbe, parallel stuff, ro, care w/ signs.

