E151 Lecture 6 – Small Signal BJT Models and Regions of Operations in Circuits

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are note for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for lecture.

Introduced BJTs Last Time

More e- diff than h+ diff at n+/p b/c of doping imbalance

- Like two diodes, but short base region steals current sometimes.
- Started with device picture → Ebers-Moll (computer) model
- Now, go from Ebers-Moll to useful models:
 - Equivalent (large signal) circuits
 - Picture
 - Small signal models

Cubolt

Notes: I_ES = alpha*I_CS, simplify to one I_S, 1/alpha terms represent carrier injection in model

Circuit Models in Regions of Operation

- Specify each region in terms of BE jn on/off and BC jn on/off
- Link to what is on in Ebers-Moll,
- Clarify hitting V_CE,SAT → saturated
- Point to U shape conversions
- Ignoring small I elements

574

Rare and weird and bad!

Two Ways to Draw Ebers-Moll → iC-vBE, iC-vCE

- i_B-v_BE is identical to i_C-v_BE
- Omitting breakdown
- Important Detail: Base Width Modulation

CE - base width

Saturates up here

Small Signal in FAR Derivation

• Graphical, Ebers-Moll Equation Based, Diode argument, ic linear ib!

| SVERS | Model cevicu in FAR | Don't forget to show gm*rp = beta

