E151 Lecture 4 – Diodes in Circuits

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are note for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for lecture.

Diodes – why are they exponential?

- 3 descriptions: Nonlinear element, 1 way current valve, exponential
- Why exponential & 1 way?
- What's breakdown?

- what is I-V?

Reverse current - minerity pushed across depl.

Lypush hard -> 2/L+ par, available

Lyfixed current - limited by # carriers

Can't solve them gracefully

- Let's make the easiest circuit: series resistor-diode ← transcendental
- Can't even do easiest circuit! How to solve?
 - Graphically
 - Approximate
 - Linearize
 - Computers ← Don't got straight here because we want design insight

 $\frac{V-v_d}{R} = I_s \left(e^{\frac{v_d}{4n}}-1\right)$ $V=v_d+RI_s\left(e^{\frac{v_d}{4n}-1}\right)$

Graphically

- One point "Operating point" or "Bias point" where both eqn true
- This is called load line analysis
- Good for qualitative understanding, esp. with resistive loads

2 = Is (Ud/ndr4 -1) and 2 = 12

- Von = 0.7 for Si, 1.7 V for red, 23 V for green, 3.1 V for live

Approximate

- Exponential can be approximated by L shape: "inf current @ V_ON"
- (Only really works @ one current level, grain of salt)
- Switch-voltage source or switch-resistor model

Linearize → Small signal modeling

- Time varying nonlinear hard in general: Is*exp(qV/nkT*sin(w*t) ...)
- So do linear DC (already done in approx.) + small signal linear AC

To
$$V_a$$

$$\frac{1}{2} \int_{a}^{b} \left(\frac{x}{2} \right) dx = \frac{1}{2} \int_{a}^{b} \left(\frac{x}{2} \right) dx$$

Differential Resistance

- Define this as 1/rd ← differential resistance: rd = n*phi_th/I_D
- Eq. circuit is a resistor voltage wiggle → linear I wiggle
- Notation: i_D (total signal) = I_D (large signal + i_d (small signal
- Need to shut off voltage sources b/c differential "wiggles go to die"

If time:

example $V_0 = V_0 - V_{01}$ $V_0 = V_0$ $V_0 = V_0$

Computers

- Newton's method / iteration TI-83+, Matlab, etc.
- Brute force calculate every vd value and pick one that matches KCL
- Circuit simulator
 - LTSpice demo
 - Components and models
 - Simulator directives
 - "You may consider this like a calculator in this class, use it throughout"
 - AC vs. DC (or .OP) vs. TRAN