E151 Lecture 1 – Intro and Linear Networks Review

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are note for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for lecture.

Why Take This Class

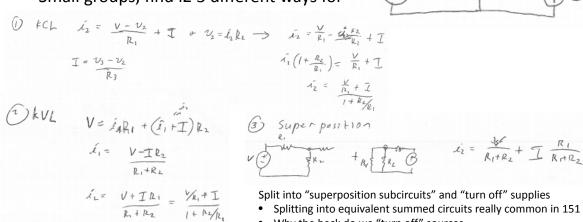
- Teaching analog circuit design
- "Analog is dead and digital is king" some strawman
- Used ADC in E80, why not apply to every analog problem? (board list)
 - Speed, noise, dynamic range, power ← All tightly linked
 - Expensive, complex to design and use, delicate
 - Why is outside the scope of this class ... but true
- What other analog tool do you know (op-amp). Why not? (board list)
 - Low power output
 - Limited bandwidth
 - We WILL learn why here ← YOU WILL BUILD ONE

Goals and How We'll Get There

- Learning goals: you will learn how to build an op-amp (as list)
 - Really good at basics: RC dynamics and KVL/KCL
 - Basic semiconductor physics and intuition for how devices work in circuits
 - Single and multi-stage linear amplifiers
 - Analog building blocks and "talking the talk"
 - Fearless in lab and rational debugging
- Organized as: Large signal / Small signal / Dynamics / Other Stuff
- Learning and note taking
 - Transparent teaching
 - Frequent low stakes assessment and interleaved practice
 - Lecture feels good, but activities are how you make knowledge stick
 - Notes during derivations

How Are We Doing This?

Mon	11:59PM	Turn in Lab Notebook & Problems
Tue	Lecture	Lab debrief
Tue	11:59PM	Turn in warm-up problems
Wed		
Thu	12:01PM Lecture	Turn in self-graded problems Quiz on lecture material (ind, + group)
Fri	Lab	Oscope lesson & work time


- Lab deliverable is notebook: next slide
- Problems don't need to be done before lab, just related
- More later on design project, problems solo, DP + lab partners

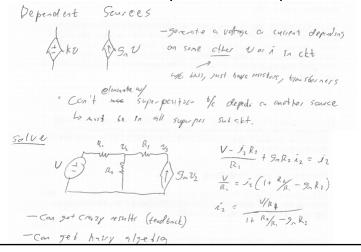
Lab Notebook Demo

- My example posted on the website.
- Necessary features
 - Chronological that helps you reference when your boss asks a q
 - Informal and handwritten parts clear, but not a writeup, always evidence
 - Contains necessary data doesn't have to be at end like this, but highlight
 - Contains convincing evidence of experiments need to be able to replicate from it
- Notebooks are important: This should help you both in and out of lab
- You need to get right measurements in this class, like 80
- Lab password
- Break to gather partners, come back to tech work.

E84 was Linear Circuit Theory

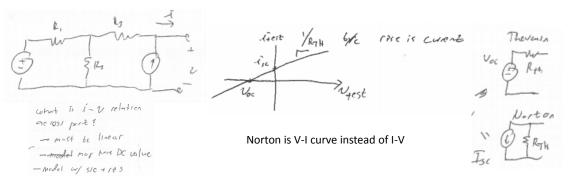
• Small groups, find i2 3 different ways for

- Why the heck do we "turn off" sources

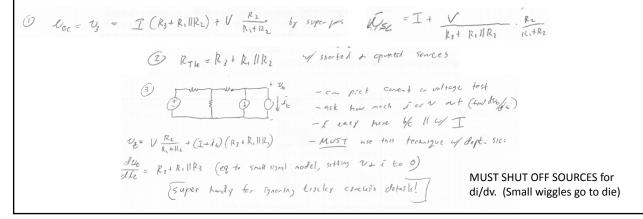

Matrix Picture of Circuit Linearity

• Split matrix into vectors and turn them off one at a time.

$$\begin{bmatrix} V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} R, & R_2 & C \\ C & R_2 & C \\ C & R_2 & R_3 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} R, \\ C \\ C \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} I_1 + \begin{bmatrix} O \\ C \\ R_2 \end{bmatrix} \underbrace{I}_1 + \underbrace{I}_1$$


Dependent Sources (I solve)

• V source or I source controlled by some other spot in circuit


Thevenin

- Don't care about circuits floating in space want to connect them
- Connecting them to stuff can cause loading, need i-v relationships
- Place we make a connection called a port (where we apply vt) eg:

Example Find Thevenin Impedance 2 Ways

- Options: voc/isc (slope), simplify network (why does that work?)
- Then I show 3rd way: test sources (derivative of circuit)

