Lecture 12 Current Mirrors and Active Loads
What is the small signal impedance of a diode connected BJT?
What is the advantage of a current source load over a resistive load?
How do we make current source loads?
Draw a simple current mirror.
What are the four design parameters we study for current mirrors? What are they for a simple mirror (include a derivation of epsilon)?
Draw a small signal model for a current source loaded common emitter

Draw a load line for a current source load on a common emitter amplifier.	What determines the
DC value of Vout?	

Draw a cascoded current mirror and record its design parameters

A handy table of resistively loaded amplifier properties.

Amp	Rin	Rout	Av
CE	r_{π}	$r_o R_C \approx R_C$	$-g_m R_C$
CE w/ degen (neglects r_o)	$r_{\pi} + (\beta + 1)(R_E r_0)$ $\approx \beta R_E$	R_C	$\frac{-\beta R_C}{r_{\pi} + (\beta + 1)(R_E r_o)} \approx -\frac{R_C}{R_E}$
EF	$\begin{vmatrix} r_{\pi} + (\beta + 1)(R_E r_0) \\ \approx \beta R_E \end{vmatrix}$	$r_o R_E (1/g_m + R_S/\beta)$ $\approx 1/g_m$	$\frac{(\beta+1)(R_E r_o)}{r_\pi+(\beta+1)(R_E r_o)}\approx 1$
CB (neglects r_o)	$r_{\pi} 1/g_m \approx 1/g_m$	R_C	$g_m R_C$
Cascode	$r_{\pi 1}$	$R_C (r_{\pi 1} r_{o1} + r_{o2} + \beta_2 r_{o2}) $ $\approx R_C$	$-g_m R_C$