E151 Lecture 22 – Output Stages

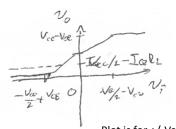
Matthew Spencer
Harvey Mudd College
ENGR151

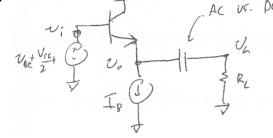
Disclaimer

These are notes for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for attending lecture.

Loads have Large Signal Implications

- We've mostly looked at them as small signal dividers
- But pulling a lot of current can "mess up bias point" (see: lab)
- Pulling lots of current is common: speakers, heaters, antennas, etc.
 - Radiation resistance
- Other loads can be tricky/unstable: plasmas, motors, piezos
- In general: want high Pout (to deliver power), efficiency (η) , linearity
- Need low zout to get efficiency: Max power xfer thm,
- Linearity comes from large signal analysis, efficiency too


Aside: power gain at low f
$$A_P = \frac{v_I^2/r_{in}}{v_O^2/R_L} = \frac{r_{in}}{R_L} a_v^2$$

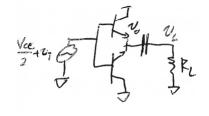

Maximum Power Transfer Thm → Low Zout

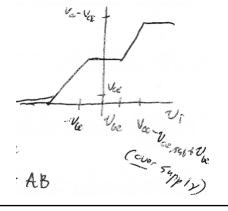
- Only doing the real valued version here
- Control load → match source, control source → minimize
- Same result for complex loads, but need conjugate match

Emitter Followers as Output Stages: Linearity

- Pretty linear b/c $V_b = V_i V_{bo}$
- Small output resistance can mess /w linearity $v_{be} = \frac{kT}{q} \ln \left(\frac{I_C}{I_S} \right) = \frac{kT}{a} \ln \left(\frac{I_B + \frac{v_O}{R_L}}{I_C} \right)$
- If vO/RI is bigger than I B then you can get clipping b/c all current is in load and Q1 is cutoff
- Alternate minimum cutoff:

Power Delivered to Load by EF

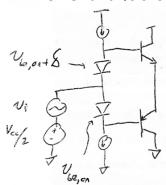

- Assuming sinusoidal signal for power analysis
- Transistor power is lower b/c it sees Vce*IL→ Pt=Vcc*IB/4 on avg.

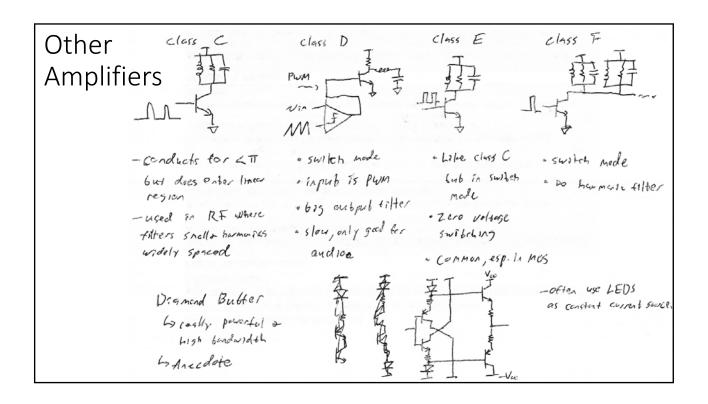

• Transistor power is lower b/c it sees
$$Vce*IL \rightarrow Pt=Vcc*IB/4$$
 on avg.

$$P_L = (Vcc-2VcE) ccs(\omega t) \circ I_B cos(\omega t) = I_B (Vcc-2VcE) ccs^2(\omega t)$$

Class B amplifiers

- EF called "Class A" b/c output device is "on" for the whole cycle
- Very linear b/c it doesn't flirt w/ cutoff or sat, but current inefficient
- Fix w/ class B each device on for 50% of cycle
- linearity hurt by crossover disto, but eff better. Also called push-pull
- Only one on at a time, find zout as EF




Class AB Amplifier, Thermal Runaway, η

- Use diodes to cancel crossover distortion.
- ullet Thermal runaway if delta not 0 ullet DC current in Q1 heats, +ve feedback

• Power analysis is about correct for class B too

