E151 Lecture 10 – Emitter Follower and Multistage

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are notes for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for attending lecture.

Small Signal Patterns – repeat just in case

- We've just seen two common small signal models that are used a lot
- Here are more, can analyze fast if you understand / memorize
 - Thevenize aggressively, can remove from circuit
- Watch for variations: dividers to vbe, parallel stuff, ro, care w/ signs.

Emitter Follower (Common Collector)

- We don't yet have the ability to generate a small rout
- Need a new amplifier topology. I do rin, they do av, I do rout
- rin follows same patters as CE w/ degen, rout is a new pattern (1/gm)

rin

• Same pattern as CE with degen

$$V_{6e} = I_{4} \Gamma_{\pi}$$

$$V_{6e} = I_{4} \Gamma_{\pi}$$

$$= V_{0} + \frac{V_{0}}{r_{0}} - g_{\pi} V_{0a}$$

$$= V_{0} \left(\frac{1}{R_{E}} + \frac{1}{r_{0}}\right) - g_{\pi} \Gamma_{\pi} I_{4}$$

$$I_{0} \left(B+1\right) = V_{0} R_{E} \| r_{0}$$

$$V_{0} = I_{1} \left(B+1\right) R_{E} \| r_{0}$$

$$V_{1} = V_{10} + V_{10} = I_{1} \left(r_{0} + \left(B+1\right) \left(R_{E} \right) r_{0}\right)$$

$$R_{0A} = \Gamma_{\pi} + \left(B+1\right) \left(R_{E} \| r_{0}\right) \approx \beta R_{E}$$

Exercise: you find av

• Gain of 1 isn't very high, level shift is nice interpretation

rout – a new small signal pattern (1/gm)

- Need to include Rs b/c not pure 1 directional
- Breaks our 2 port model a bit

Multistage Picture and 2 Ports

- Large signal notes: separate bias points with AC coupling
- rin_tot = rin_1, rout_tot = rout_3,
- V_SW,tot = min VSW ← Need to use FFT to tell if you violate VSW