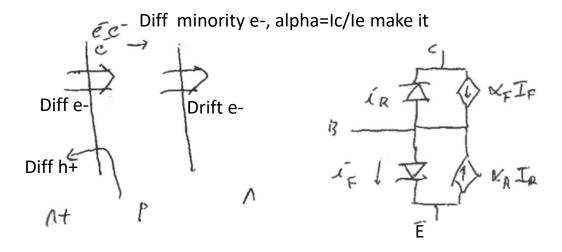
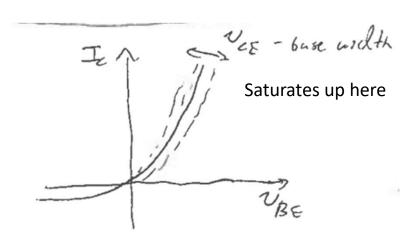
E151 Lecture 6 – BJTs in Circuits & PNP

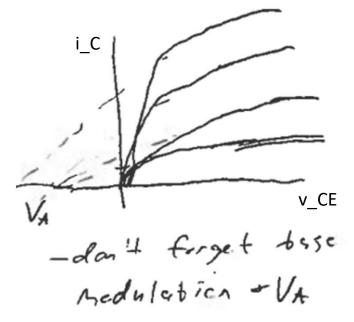

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are note for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked for them anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for lecture.

Introduced BJTs Last Time


- Like two diodes, but short base region steals current sometimes
- Started with device picture →
 Ebers-Moll (computer) model
- Now, go from Ebers-Moll to useful models:
 - Picture
 - Equivalent circuits
 - Small signal models



Note: I_ES = alpha*I_CS, simplify to one I_S

Pictures – iC-vBE, iC-vCE

- Two different ways to look at things
- Omitting breakdown on these graphs
- i_B-v_BE is identical to i_C-v_BE

Circuit Models in Regions of Operation

- Specify each region in terms of BE jn on/off and BE jn on/off
- Link to what is on in Ebers-Moll, clarify hitting V_CE,SAT → saturated

Cuboff
$$\int \int \frac{\alpha}{1-\alpha} i_b = \beta i_b$$
Rare and weird and bad!

Exercise: finding regions of operation

- Basically a CE configuration w/ impractical bias
 - E=0V,
 - B=100k+V B,
 - C= 1k+V_C,
 - beta=100,
 - V_CESAT=0.1V,
 - VBE_ON=0.7V
- Find IC if $V_B = \{0.6V, 3.2V, 5.7V\}$ and $V_C = 5V$
- Possible to saturate yourself!