E151 Lecture 5 Intro to BJTs

Matthew Spencer
Harvey Mudd College
ENGR151

Disclaimer

These are notes for Prof. Spencer to give the lecture, they were not intended as a reference for students. Students asked anyway, so I'm putting them up as a courtesy. Remember that they are not intended as a substitute for attending lecture.

Case Convention Correction

- v_D is total signal \leftarrow Formerly wrong
- $\bullet \ v_d$ is small signal
- V_D is large signal
- ullet V_d is sinusoidal steady state phasor coefficient ... comes up later

What is a Transistor?

- Transistor from transfer varistor
 - causes i-v changes in a "distant" terminal
- Many types: MOSFET, JFET, BJT
- Focusing on BJT because they are good to learn with
- MOSFET most popular

What is a BJT

- This middle -- Interact? a sindent

 Can add/subfract corners @ base

 E hase collector
- Two types: NPN, PNP
- Focus on NPN for now. (cole)
- Get the room to the naïve model (above), why is it not like a diode?
- Naïve model works OK for some conditions (below)

Doesn't Act Like a Diode if 1 Fwd / 1 Rev Bias

• Ebers-Moll: good in all 4 bias regions. Used in computers

How Do We Actually Put This In A Circuit

- Simplifying approximation: Only 2 things on at once
- Redraw as equivalent circuit with easier math

Making the Whole BJT Picture

• There are two ways to draw Ebers-Moll – IC-VBE and IC-VCE

• Important Detail: Base Width Modulation

- Changing pr 6100 Changes dept region width

- Changing pr 6100 Changes dept region width

- Affects back disturgen

it Be width changes

- 5mit change in I a y/vo

E B C

