Small-Signal Tricks

Flipping Direction Consider the following simple small-signal model:

Sometimes, it's convenient to flip the direction of the voltage-controlled current source (for instance, to match one of the other tricks in this handout). In this case, v_{be} must be flipped too, either on r_{π} or in the voltage-controlled current source's equation:

 $\mbox{Effective } {\bf g}_m \quad \mbox{Compare the simple small-signal model of the previous trick with one with a source resistance: } \label{eq:field}$

In the left circuit, $v_{be} = v_{in}$, and so the output current is simply

$$i_{\mathrm{out}} = g_{\mathrm{m}} v_{\mathrm{be}} = g_{\mathrm{m}} v_{\mathrm{in}}$$

However, in the right circuit, v_{be} is divided such that $v_{be} = \frac{r_{\pi}}{R_{s} + r_{\pi}} v_{in}$. The output current will be similarly divided:

$$i_{\rm out} = g_{\rm m} v_{\rm be} = \frac{r_{\pi}}{R_{\rm S} + r_{\pi}} g_{\rm m} v_{\rm in}.$$

Evidently, adding the source resistance decreased the amplification power of the transistor. To quantify this effect, we lump the division factor into $g_{\rm m}$ to make an effective $g_{\rm m}$:

$$g_{\mathrm{m,eff}} = \frac{r_{\pi}}{R_{\mathrm{S}} + r_{\pi}} g_{\mathrm{m}}.$$

Now, just as before, the amplification of the transistor is written as $i_{\text{out}} = g_{\text{m,eff}}v_{\text{in}}$. Thinking about effective g_{m} can give quick intuition about the effect that dividing r_{π} has on an amplifier's gain.

Boosting \mathbf{R}_{E} Consider the following circuit:

Let's say we're trying to find r_{in} , meaning we only care about the ratio between v_{in} and i_{in} . To calculate v_{in} , we really only need to find i_E since $v_{in} = i_{in}r_{\pi} + i_Er_E$. We find i_E :

$$i_{\rm E} = i_{\rm in} + g_{\rm m} v_{\rm be} = i_{\rm in} + g_{\rm m} i_{\rm in} r_{\pi} = (\beta + 1) i_{\rm in}.$$

Interestingly, this is the same current that would flow through a resistor of size $(\beta + 1)R_E$ without the voltage-controlled current source. This allows us to transform the circuit as follows:

Here, r_{in} is trivial to solve for. So, we see that a g_m generator driving into R_E effectively increases its resistance by a factor of *beta*. Making this substitution can greatly simplify complicated small-signal models. As an example of this trick, consider a common emitter amplifier with emitter generation:

The small-signal model becomes

 $R_{\rm C}$ doesn't affect $r_{\rm in}$, so this circuit is the same as that at the beginning of this trick for finding $r_{\rm in}$. Making the $(\beta + 1)R_{\rm E}$ substitution, we find

$$r_{\rm in} = (\beta + 1)R_{\rm E} + r_{\pi}.$$

Directly Wiggling \mathbf{g}_m $\;$ Consider the following circuit:

Let's say we're trying to find r_{out} . Because we're driving v_{be} , the voltage-controlled current source will output a current directly proportional to v_{out} . And, since our output ports are directly across this current source, its current equals i_{out} . Then, we simply have

$$r_{\text{out}} = rac{v_{\text{out}}}{i_{\text{out}}} = rac{v_{\text{out}}}{g_{\text{m}}v_{\text{out}}} \Rightarrow r_{\text{out}} = rac{1}{g_{\text{m}}}.$$

The intuition behind this is that we directly control the wiggle on v_{be} , which g_m is related to. So, r_{out} depends directly on g_m .

As an example, consider finding $r_{\rm out}$ of an emitter follower:

The small-signal model for finding $r_{\rm out}$ (ignoring $r_{\rm o}$) is

We can assume that very little current flows through r_{π} as compared with the voltage-controlled current source. We can also use the "flipping direction" trick so that the voltage-controlled current source points down and $v_{\rm be}$ is flipped. Then, this circuit perfectly matches the circuit for wiggling $g_{\rm m}$, and we find

$$r_{\rm out} \approx \frac{1}{g_{\rm m}}.$$

Left-Right Pattern for $r_{\rm in}$ $\,$ Consider the following circuit:

In this topology, we call $R_{\rm l}$ the left resistor and $R_{\rm r}$ the right resistor. We solve for $r_{\rm in}$ for this circuit:

$$v_{be} = i_{in}R_{l}$$
(1)
KCL @ top node:
Substituting in (1):
Multiply through by R_{r} :
Substituting in (2):

$$v_{be} = i_{in}R_{l} \qquad (1)$$

$$i_{in} = -g_{m}v_{be} + \frac{v_{in} - v_{be}}{R_{r}}$$

$$i_{in} = -g_{m}i_{in}R_{l} + \frac{v_{in} - i_{in}R_{l}}{R_{r}}$$

$$R_{r}i_{in} = -g_{m}i_{in}R_{l}R_{r} + v_{in} - i_{in}R_{l}$$

$$\Rightarrow v_{in} = i_{in}(R_{l} + R_{r} + g_{m}R_{l}R_{r}) \qquad (2)$$

$$r_{in} = \frac{v_{in}}{i_{in}} \Rightarrow \boxed{r_{in} = R_{l} + R_{r} + g_{m}R_{l}R_{r}}$$

This pattern shows up surprisingly often, allowing the input resistance to be read off instead of derived. For example, consider a simple emitter follower. If we ignore any source and load resistance, we have:

The small signal model becomes

 r_π is in series with the bottom half of the circuit, so we can simply switch these two halves:

Using the left-right trick for $r_{\rm in}$, we find by inspection that

 $r_{\rm in} = r_{\pi} + R_{\rm E} \parallel r_{\rm o} + g_{\rm m} r_{\pi} R_{\rm E} \parallel r_{\rm o} = (\beta + 1)(R_{\rm E} \parallel r_{\rm o}) + r_{\pi}.$