Differential Inputs
- Offset
 - constant vs. time
 - Varying
 - Notes: rail-to-rail
 - DC coupled
 - Input bias
 - offset = drift

Practice makes ½ circuits
- Degeneration
 - Notes: extends input range
 - Notes: rail-to-rail (input)
- Equalizer
 - Summary

Single-ended output
- Take 1 side
- Mirror load
- Small signal Ro

Dynamics of differential
- Diff ½ ckt
- CM ½ ckt

Discussion/below rec... (1)

* From lab yesterday, need to review differential inputs

\[V_{cm} \neq V_{dm} \text{ are unrelated to frequency} \]

\[V_{in} = 2V \neq V_{in} = 1V \rightarrow V_{cm} = 1.5V \neq V_{dm} = 1V \]

\[V_{dm} \text{ is often a large constant bias} \]

- \(V_{dm} \) is often small \(\rightarrow \) use small signal gain \(A_{in} \)

- Measure \(A_{cm} \) by injecting time varying common mode signal
 \[V_{dm} = 0 \rightarrow V_{cm} = V_{cm} \sin(\omega t) \]
 \[\Rightarrow V_{in} = V_{in} = V_{in} + V_{cm} \sin(\omega t) \]

- \(A_{cm} \) means \(V_{cm} \) peak will be \(A_{cm} \cdot V_{cm} \leftarrow V_{cm} = V_{cm} \sin(\omega t) \)
- Use time varying \(V_{cm} \) easier to see sinusoid \(\rightarrow \) output, but could measure just DC voltage \& multimeter

This is because it is DC coupled!

\[\rightarrow \text{No coupling cap in amplifier} \rightarrow B_{in} = A_{cm} \frac{1}{\beta} \]

\[\text{Limited input range \(\rightarrow \) too low cuts off B} \rightarrow \text{Oscillograph rails-to-rails} \]
Measure A_{dm} w/ similar technique

$$V_{on} = \text{Amplitude}$$

$$V_{cn} = V_{b}$$

$$V_{cm} = V_{b} + \frac{V_{on}}{2} \sin (\omega t)$$

$$V_{cm} = V_{b} - \frac{V_{on}}{2} \sin (\omega t)$$

~ means $V_{on} \text{ pk-pk will be } A_{dm} \cdot V_{on}$

$$V_{ocm} = V_{ocm} + \frac{A_{dm}}{2} \cdot V_{on}$$

If transistors or resistors aren't identical then you get offset

Mismatched R (similar to mismatched I_s)

In this case

$$V_{cn} = V_{b} + \frac{I_{heel} \Delta R}{4 \pi R}$$

$$V_{dm} = \frac{I_{heel} \Delta R}{2 \pi R}$$

- Add small constant
- Add input to balance output

Including V_{os} (or I_{os}) in amp model

- Output referred offset voltage is $-I_{heel} \Delta R$
- $V_{cm} = V_{b}$
- $V_{dm} = 0$

OR

Nominally I_{heel} constant

- But can vary as soon V_{BE}
- Can be balanced, so it almost
- Real output offset taken into account
We often want a differential input vs. a single-ended output
- e.g. op-amps

* easiest way

\[V_{out} = \frac{1}{2} V_{in} + V_{in} \]

- but what we're doing anyway

= use current

\[-9m \text{ generator of left side reflected to right} \]

- How do we make \(\frac{1}{2} \) circuit to analyze something symmetric

- \(G_{m3} + G_{m4} \) appear in parallel (in midpoint node

- \(R_{o3} = R_{o4} \) sort of in parallel (\(Y_0 \) for diff node)

- But \(R_o \) is a fundamentally single ended measurement!

- \(A_v \) can be still considered differentially

\[A_v = \frac{V_{out}}{V_{in}} \]

\[A_v = (G_{m3} + G_{m4}) \left(\frac{R_{o4}}{R_{o3}} \right) \]

\[A_v = \frac{V_{out}}{V_{in}} \]

\[A_v = (G_{m3} + G_{m4}) \left(\frac{R_{o4}}{R_{o3}} \right) \]

\[A_v = \frac{V_{out}}{V_{in}} \]

- For \(A_v \):

\[V_{in} = \frac{1}{2} R_{o3} \]

- For \(R_o \):

\[\text{current ... my most disappointing moment in this class) NOT \(\frac{R_{o4}}{2} \), rather \(\frac{R_{o4}}{2} \)}

- see \(R_{o3} \) in \(\frac{1}{m4} \) rest

\[Z_1 = \frac{1}{2} \text{ control } V_i, \text{ directly} \]

- \(L_0 \) all current flows in \(\frac{1}{m4} \) resister, so

\[V_m = \frac{g_{m4}}{2} V_i + V_{in} \]

\[Z_2 = R_{o4} + \frac{R_{o4}}{2} + \frac{g_{m4} R_{o4}}{2} \]

\[L_0 \text{ is } V_i = \frac{V_{in}}{m4} = \frac{V_{in}}{2} \frac{g_{m4}}{2} \frac{R_{o4}}{2} \frac{1}{g_{m4}} \to V_m = \frac{V_{in}}{2} \frac{g_{m4}}{2} \frac{R_{o4}}{2} \]

\[- \frac{V_{in}}{2} \frac{g_{m4}}{2} \frac{R_{o4}}{2} \frac{1}{g_{m4}} = \frac{V_{in}}{2} \frac{g_{m4}}{2} \frac{R_{o4}}{2} \]
More practice w/ V/2 circuits

- Draw an V/2 circuit & find Au

- Looks like CE V/degen
 \[Au = \frac{-R_c}{R_E} \]

- Extends linear input range ... also true of single ended design
 - Ube remains \(\approx 0.7 \) even as current source left or right
 - Linear range \(\approx I_{sat} R_E \) \(\rightarrow \) voltage when all I source 1 way
 \(\leftarrow \) point @ which Ube starts changing

- Find \(d_m \approx C_h \frac{1}{2} C_k \). Assume Q1=Q2 identical

An equalizer, CE, experiences gain boost & we'll see why

- \(R_E \) & \(C_E \) shunt \(\frac{1}{2} C_k \)
 - tail nodes @ same voltage

- Differential ground in middle, \(R_E \) can't short
 - Double impedance \(\rightarrow \) \(\frac{R_E}{2}, 2C_E \)

Dynamics
- Different for dm signals & em signals \(\frac{1}{2} C_k \) they see different impedances
 - Use \(\frac{1}{2} C_k + 0.5 \times CT \) or old exact solutions