Common Emitter Derivations
- R_{in}, R_{out}, β
- Load
- Lees Signal level shift
- \(\frac{1}{2} \alpha \beta \frac{V_s}{V_t} \) control, R_o in T model

Common Base Derivations
- R_{in}, R_{out}, β with R_o
- Current Follower
- Finite C_v gain, see book
- Low input impedance?

Project Q3-A

Left out hoping for an understanding of the EF

\[A_v = 1, \frac{V_s}{R_{in}} \text{ high, } R_{out} \text{ low} \rightarrow \text{called a voltage buffer} \]

- Need to include R_s in R_{out} analysis b/c life's not equal

Find R_{in}

\[\text{rearranged: } V_{ce} = \frac{1}{2} V_{t} \]

\[\text{Similar to CE VI design} \]

- Need to start with U_t

\[U_{be} = i_b \left(\frac{1}{R_E} + \frac{1}{R_o} \right) - \beta \pi i_b \]

\[i_c (B+1) = \frac{-U_{in}}{R_{E2} \pi} \]

\[V_o = i_b (B+1) R_{E2} \pi \]

\[U_t = U_{bo} + U_{ce} = A_t \left(\frac{1}{R_E} + \frac{1}{R_b} \right) \left(\frac{R_{E2} \pi}{R_b} \right) \]

\[R_{in} = \frac{R_{E2} \pi}{B+1} \approx R_E \]
Calc A_v

$$V_0 = I_t (B+1) (R_{E//R_o}) \quad \text{from above}$$

$$A_v = \frac{(B+1) (R_{E//R_o})}{r_t + (B+1) (R_{E//R_o})} \quad V_i \quad I_t = \frac{V_i}{R_{in}}$$

$\rightarrow A_v \approx 1$

Let's look at a large signal to check this.

- Gain is 1, y level shifted down
- Used to get DC voltages right
- V_{BE} stays ~0.7, small sig capturs changes

Calc R_{out}

- Need to include R_s
- Start w/ V_c this time!

$$I_t = \frac{V_b}{R_E} + \frac{V_b}{R_o} + \frac{V_b}{r_t + R_s} - g_m V_{be}$$

and

$$V_{be} = -\frac{R_{b\pi}}{r_{b\pi + R_s}} V_c$$

So

$$I_t = \frac{V_c}{R_E} \left(\frac{1}{R_E} + \frac{1}{R_o} + \frac{1}{r_{b\pi + R_s}} + \frac{g_m}{r_{b\pi + R_s}} \right)$$

$$R_{out} = R_E \parallel R_o \parallel \frac{r_{b\pi + R_s}}{B+1} \approx \frac{1}{r_{b\pi}} + \frac{R_s}{B+1}$$

- Backward's gain of $\frac{r_{b\pi}}{R_s + r_{b\pi}}$
 - Ignore in 2 port model
 - Say this small...

- Why $\frac{1}{g_m}$? Voltage applied directly
 across g_m control terminals receives controlled current
 \rightarrow watch for this pattern!
Last type of amplifier is called common base.

\[V_B = V_o \]

- Hard to bias.
- Ignore \(R_o \) for now.
- See Gm for full derivation.
- w/ finite \(R_o \) = a pain.
- net unilateral.

Common to draw:

\[U_c = \frac{1}{g_m} + g_m U_{bc} \]

Some \(g_m \) pattern from controlling the emitter.

Low input impedance good for antennas & matching to 50Ω RF stuff.

\[R_{in} = R_c \]

\[9_m \text{ sec tuned b/f } U_c \text{ started like CE or degen.} \]

\[A_v = \frac{-g_m U_{bc} R_c}{1} \]

\[V_o = -9_m U_{bc} R_c \]

\[= 9_m (-\frac{V_c}{R_o}) R_c \]

\[= 9_m R_c \]

- can do this analysis w/ a T-model of BJT.