Last time looked at simply biased CE amplifier

- Specified 3 parameters we cared about:
 - Colloquial name: 2-port
 - R_{in} Input resistance: The mean resistance seen at input
 - R_{out} Output resistance: The mean resistance seen at output

A_v Voltage Gain: How much bigger (small signal) does my signal get? $\frac{dV_o}{dV_i}$ at output

- Derivative definitions: come from an ideal small signal amplifier

- We make small signal model to find R_{in}, R_{out}, A_v of our amp
 - Need to find large signal model to know small sig
 - Ckt. central large signal called biasing/bias network, self called bias point

Given $V_b \rightarrow I_c$

$V_o = V_{cc} - I_c R_C$
Lec 8 - CE w/ dosen

Other design params we care about: I_i, S_{low}, A_i, V_{sw}

V_{sw} most important, all others 1st quick

I_i Input Leakage/ bias current

S_{low} Low frequency

A_i Small signal current gain

Large signal current going into input port

Frequency @ which mid and assumption fails - start seeing cap high pass

How much more current does amp split out than was sent in?

Find pole associated w/ each mid-band cap

V_{sw} Output Voltage swing

- How much can V_o change w/o breaking small signal model?

Max swing 6V_{ss}

1. $V_{cc}/2$

2. $V_{cc}/(R_{dc}+R_{ac})$

$-12V$.

V_{cc} as rough cut

V_{dd} Bridges large α small signal model, so it's tracky

α Tracky and easy

- Rely on V_{ce}, set for downswing

- Upswing by (load)

- by reflecting to input

- OR by V_{ce} as rough cut
Output Swing Example

\[V_{cc} = 5V \]
\[R_L = 1 \text{ k}\Omega \]
\[I_c = 2.5 \text{ mA} \]

- Find top allowed voltage, bottom allowed voltage
 \[V_{SW} \]

1. Find \(V_o \)
 \[V_o = V_{cc} - I_c R_L = 2.5 \text{ V} \]

2. Minimum voltage (set by \(V_{cc, SAT} \))
 \[V_{min} = V_{cc, SAT} = 0.1 \text{ V} \]

3. Maximum voltage
 \[V_{max} = V_{cc} = 5 \text{ V} \]
 \[V_{SW} = 4.9 \text{ V} \]

- Measure distortion
 - Use FFT. Harmonic peaks
 - 26 mV at 100 = 2.6 V ~ so 2.5 V or approx here

Let's design an amplifier

So far we've moved from circuits → amp specs.

Your job is to move from amp specs to circuits.

Example:

\[R_{out} < 2 \text{ k}\Omega \]
\[R_{in} > 1 \text{ k}\Omega \]
\[A_v = \frac{V_o}{V_i} \]
\[V_{SW} > 4 \text{ V} \]

1. Start w/ easy constraints
 - In this case, \(R_{in} \sim R_L \) →
 \[r_{in} = \frac{B}{g_m} = \frac{R_P}{I_c} = \frac{100 - 25 \text{ mV}}{2.5 \text{ mA}} > 1 \text{ k}\Omega \rightarrow I_c > 2.5 \text{ mA} \]
 - Usually, easy constraints are found @ output: \(V_{SW} \) or \(R_{out} \)

2. Propose
 - Know \(V_c = 2.5 \text{ V} \)
 - Need \(R_E = 1 \text{ k}\Omega \)

(Real-world circuit notes: \(V_o < 8 \text{ V} \) + down swings, says \(V_o > 4.8 \text{ V} \), \(\frac{1}{2} \) way is 6.4 V)
Have on odd issue —

- Specifying $R_{in} \propto V_{sw}$ every, specifies $R_{out} \propto A_V$

$$1.6k\Omega \cdot \text{IC} \cdot s = A_V = 160 \quad \Rightarrow \quad R_{out} = 1.6k\Omega$$

- We'd like to build amps where R_{in} we can set V_{sw} input, A_V

Trick #1 — Leverage the midband

- Works dc, trickier high pass

Trick #2 — Emitter degeneration

- Crazy new small signal
- Ignoring R_o for now, you'll add it back in on your HW

Find R_{in}, R_{out}, A_V

*Note $V_{in} \neq V_{be}$
- Lends to feedback
 (Could do fin here)

$$V_{be} = i_1 \cdot R_{\pi}$$

$$V_E = (9nF_\pi i_1 + i_1) R_E$$

$$V_i = V_E + V_{be} = i_1 (R_{\pi} + R_E + B_{RE})$$

You Try A_V

$$V_{be} = \frac{1}{R_{\pi}} \frac{V_i}{R_{in}}$$

$$V_o = -\frac{9nF_\pi \frac{V_i}{R_{in}} R_L}{R_{\pi} + R_E + B_{RE}}$$

$$A_V = \frac{-B_{RE}}{R_{\pi} + (R_\pi + 1) R_E} \approx \frac{-R_L}{R_E} \frac{1}{9nF_\pi \frac{V_i}{R_{in}}}$$