Add Load Line

Optional) Small signal model review in FAR

\[I_c = \beta I_b \]

\[I_c = I_c + I_b \]

\[I_b = I_{ES} \left(e^{\frac{V_{BE}}{V_A}} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \]

\[I_c = \beta I_{ES} \left(e^{\frac{V_{BE}}{V_A}} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \]

\[\frac{\Delta I_c}{\Delta V_{BE}} = \frac{I_c}{\Phi_{th}} = g_m \]

\[a \text{ conductance, } g_m = \frac{\Phi_{th}}{I_b} = \frac{B}{g_m} \]

\[\frac{\Delta I_c}{\Delta V_{CE}} = \frac{I_c}{V_A} \]

We've been ignoring in'

\[\frac{\Delta I_c}{\Delta V_{BE}} = \frac{I_c}{\Phi_{th}} = g_m \]

\[\text{on large signal plots} \quad \Rightarrow \quad r_o = \frac{V_A}{I_c} \]

All same for NPN & PNP b/c of wackr sign conventions making large signal plots same (upside down large signal models only issue)
GET HYPE, WE'RE DOING AMPLIFIERS!

Let's sort of why we're here!

Roadmap

- 3 terminals = 3 key functions (in, out & bias)

\[
\begin{array}{c}
\text{in} & \text{out} & \text{bias} \\
\text{60\%S} & \text{60\%S} & \text{bias} \\
\end{array}
\]

Common-emitter \hspace{1cm} \text{Common-collector} \hspace{1cm} \text{Common-base}

or emitter follower

Always use \(V_{in} \) to modulate the junction

Amplifier Design Parameters

- Each configuration does different things well, want a quantitative description of these things

- A most common parameters are \(R_{in}, R_{out} \) & \(A_{v} \) & \(V_{sw} \)

\(\rightarrow \) technically \(Z_{in} \) & \(Z_{out} \) \hspace{1cm} \(\rightarrow \) small signal GNY, \(R_{in} \) & \(R_{out} \) limits

\[\begin{array}{c}
R_{in} \hspace{1cm} \frac{\Delta V_{in}}{\Delta V_{in}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{in}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{in}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{in}} \\
R_{out} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{out}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{out}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{out}} \hspace{1cm} \frac{\Delta V_{out}}{\Delta V_{out}} \\
\end{array} \]

- Recall our 2 port amplifier model

- Can rep. as

Thevenin/Norton

- Circuit portion of these derivatives is small signal test sources

- 2 port model lets us separate analysis from loading
- Solve V_{SW} (\approx oddities: A_f, f_b - simple thing slow)

until after we apply this

$$V_C \rightarrow V_R \rightarrow I_C \rightarrow V_O$$

- Let V_B be picked such that we have I_C flowing into BJT

CE Amplifier!

- You says find $R_{in}, R_{out} \approx AV$ (symmetrically)
- Find values if $I_C = 1mA, V_A = 50V, B = 100, R_L = 1k$

Small signal model

$$R_{in} = r_{II}$$

$$R_{out} = R_{out} \parallel R_L$$

$R_{out} \approx 1k \approx AV \approx 40$

$$AV = -g_m (R_{out} \parallel R_L)$$

- V_i controls V_{be} directly

$$-W/ HSB \rightarrow g_m = \frac{I_C}{V_{be}} \approx 40 \text{ mS} \approx 25 \text{ mV/ft}$$

$$r_o = 50k \Omega \left(\frac{50V}{1mA} \right)$$

Find V_{be}:

- V_{be} controls I_C
- V_{be} is

V_{be} controls I_C

$$I_C \approx \frac{V_{ee} - V_{o}}{R_L}$$

- Men's cutout transistor

$V_{be}, \mu_n = 0.7V$

- Propagate $V_B - V_{be}, \mu_n$ to our pub

$V_o \approx V_{CE, SAT}$

- Voltage swing, V_{SW}, is $\approx V_{be} - V_{min}$
- Other amplifier specs.
 - Short circuit current gain, A_i
 \[A_i = \frac{i_{\text{short}}}{i_{\text{in}}} \]
 $A_i > 50 \pi$
 - Input bias current, I_{in}
 - Large signal, DC, parameter
 - How much current does the amp input need?
 - For us: $I_{c/B}$ in CE amp
 - Low frequency corner frequency
 - Where does mid-band approx break?

- Large Signal Behavior
 - Looks like logic gate X'or curve, some early logic gates made this way

- Let's try practical CE amplifier w/ series bias
 \[A_v = \frac{R_i}{R_i + R_{\pi}} \frac{g_m}{R_L} R_L \]
 \[R_{\text{in}} = R_b + R_{\pi} || R_1 || R_2 \]
 \[R_{\text{out}} = R_c || R_L \]