
 1 © 2014 David Money Harris and Sarah L. Harris

Introduction
In this lab and the next, you will design and build your own multicycle ARM processor.
You will be much more on your own to complete these labs than you have been in the
past, but you may reuse any of your hardware (SystemVerilog modules) from previous
labs.

Your multicycle processor should match the design from the text, which is reprinted in
Figure 1 (at the end of the lab) for your convenience. It should handle the following
instructions: ADD, SUB, AND, and ORR (with register and immediate operands, but no
shifts), LDR and STR (with positive immediate offset), and B.

The multicycle processor is divided into three units: the controller, datapath, and
mem (memory) units. Note that the mem unit contains the shared memory used to hold
both data and instructions. Also note that the controller unit comprises both the
Decode and Conditional Logic units. We've repeated the control unit diagram in
Figure 2 (at the end of the lab) for your convenience.
In this lab you will design and test the controller.

Overall Design

Now you will begin the hardware implementation of your multicycle ARM processor.
First, copy the provided arm_multi.sv to your own directory and rename it
arm_multi_xx.sv.

The arm module instantiates both the datapath and the control unit (called the
controller module). You will design the controller module (and all of its
submodules) in this lab. In the next lab, you will design the datapath. The memory is
essentially identical to the data memory from Lab 9 and will be provided for you.

Control Unit Design
The control unit (controller) is the most complex part of the multicycle processor. It
consists of two modules: Decode (decode) and Conditional Logic (condlogic).
decode instantiates the Main FSM (mainfsm) and includes logic for the ALU
Decoder, PC Logic, and Instruction Decoder. On reset, the Main FSM should start at

Digital Design and Computer Architecture

Lab 10: Multicycle ARM Processor (Part 1)
�

 2 © 2014 David Money Harris and Sarah L. Harris

State 0 (DECODE). The state transition diagram is given in Figure 3 at the end of this
handout.
The controller, decode, condlogic, and mainfsm headers are given in
arm_multi.sv showing the inputs and outputs for each module. A portion of the
SystemVerilog code for the control units has been given to you. Complete the
SystemVerilog code to completely design the hardware of the controller and its
submodules. Remember that you can reuse code from the single-cycle processor of Lab
9. Please see Figure 2 at the end of this handout for a change to the Condition Logic
module.

Generating Control Signals

Before you begin developing the hardware for your ARM multicycle processor, you’ll
need to determine the correct control signals for each state in the multicycle processor’s
state transition diagram. This state transition diagram is shown in Figure 7.41 in the book
and in Figure 3 in these instructions. Complete the output table of the Main FSM in Table
1 at the end of this handout. Give the FSM control word in hexadecimal for each state.
The first two rows are filled in as examples. Be careful with this step. It takes much
longer to debug an erroneous circuit than to design it correctly the first time.

Testing
Create a controllertest_xx.sv testbench for the controller module. Test
each of the instructions that the processor should support: ADD, SUB, AND, and ORR
(with register and immediate operands, but no shifts), LDR and STR (with positive
immediate offset), and B. Be sure to test both taken and nontaken branches. From Figure
2, the controller inputs are: CLK, reset, Cond3:0, Op1:0, Funct5:0, Rd3:0, and
ALUFlags3:0. The SystemVerilog header for controller lists clk, reset,
Instr[31:12], and ALUFlags[3:0] as inputs. Recall from the machine code formats
that Instr[31:12] includes the Cond, Op, Funct, and Rd fields (as well as Rn, which is not
used).
Your test bench should apply the inputs to controller (clk, reset, Instr[31:12],
and ALUFlags[3:0]). Visually inspect the states and outputs to verify that they match
your expectations from Table 1. If you find any errors, debug your circuit and correct the
errors. Save a copy of your waveforms showing the inputs, state, and control outputs at
each state.

 3 © 2014 David Money Harris and Sarah L. Harris

What to Turn In
Submit the following elements in the following order. Clearly label each part by
number. Poorly organized submissions will lose points.
1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for next semester’s labs.
2. A completed Main FSM output table (Table 1).

3. Your arm_multi_xx.sv file highlighting your controller, decode, condlogic,
and mainfsm modules.

4. Your controllertest_xx.sv testbench module.

5. Simulation waveforms of the controller module showing (in the given order): CLK,<
Reset,< Cond,< OP,< Funct,< Rd,< ALUFlags,< ALUControl,< ImmSrc,< RegSrc,< RegWrite,<
MemWrite,< PCWrite,< state, and the entire control word (i.e. the 4-nibble word you
entered in Table 1) demonstrating each instruction (including taken and non-taken
branches). Display all signals in hexadecimal. Does it match your expectations?

 4 © 2014 David Money Harris and Sarah L. Harris

State%
(N
am

e)

NextPC

Branch

MemW

RegW

IRWrite

AdrSrc

ResultSrc
1:0

ALUSrcA
1:0

ALUSrcB
1:0

ALUOp

FSM
%Control%

W
ord%

0 (Fetch) 1 0 0 0 1 0 10 0 1 10 0 0x114C
1 (Decode) 0 0 0 0 0 0 10 0 1 10 0 0x004C
2 (MemAdr)
3 (MemRead)
4 (MemWB)
5 (MemWrite)
6 (ExecuteR)
7 (ExecuteI)
8 (ALUWB)
9 (Branch)

Table 1. Main FSM output

 5 © 2014 David Money Harris and Sarah L. Harris

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteData

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

10
01
00

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

Figure 1. ARM Multicycle Processor

 6 © 2014 David Money Harris and Sarah L. Harris

ImmSrc1:0

MemW

ResultSrc
ALUSrcA

ALUControl1:0

Decode

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

PCWritePCS
NextPC

IRWrite

ALUSrcB

AdrSrc

C
o

n
dition

a
l L

o
g

ic

CLK

(a) Control Unit

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW
RegW

4:0

NextPC
IRWrite

AdrSrc
ResultSrc

ALUSrcB

Instr
DecoderOp1:0

CLK

Branch

Decode(b)

Register
Enables

Multiplexer
Selects

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
ondition
C

h
ec

k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
ondEx

MemW

RegW

NextPC

(c) Conditional Logic

C
LK

FlagW
rite

1:0

Figure 1. ARM Multicycle Control: (a) controller, (b) Decode unit, (c) Conditional Logic unit

Important: Notice the flip-flop before the FlagWrite1:0 signal.

Explanation: This flip-flop delays updating the Flags until the end of the instruction (in the ALUWB state).

This fixes an error from the Condition Logic module given in the draft text. The error occurs when an instruction is both conditionally
executed and sets the condition flags (Cond != 1110 AND S=1). Without this flip-flop, the Flags are updated in the ExecuteR or
ExecuteI state (due to S=1). Then, in the ALUWB state, writing the destination register (RegWrite) depends on Flags set by the current
instruction instead of a prior instruction. This flip-flop is missing in the figure in draft ARM chapter 7.

 7 © 2014 David Money Harris and Sarah L. Harris

S0: Fetch
AdrSrc = 0

AluSrcA = 01
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

IRWrite
NextPC

S1: Decode
ALUSrcA = 01
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 00
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 00
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 10
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR
STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← ALUOut + offset

S6: ExecuteR
ALUSrcA = 00
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

 Figure 2. ARM Main FSM state transition diagram

