Digital Electronics and Computer Engineering (E85) Spring 2013 Syllabus

Teaching Staff

Professors:	Josef Spjut Parsons 237	4	josef_spjut@hmc.edu Hours: T,W 2:30-4:30pm
	Ruye Wang Parsons 237	2	ruye_wang@hmc.edu Hours:
Lab Tutors:	Dong-Hyeon Park Joshua Vasquez Austin Chen Nicole Yu Dylan Stow		
Lab Graders:	Sasha Paudel Katherine Yang		
Homework Graders:	Douglas Hu Lauren Nishizaki Matt Espy		
Schedule:			
Lecture: Lab Hours:	Nicole Dylan Dong-hyeon	Tu 9-1 W 7-9 Th 6-8	3
	Joshua	Th 7-9	J.

TBI Tutor Hours:

Textbook:

Harris & Harris, Digital Design and Computer Architecture, 2nd Ed., Morgan Kaufmann, 2012.

Th 9-11

Sat 3-5, Sun 7-9

Electronic Communication

Class Web Page: http://fourier.eng.hmc.edu/e85 Class Email List: eng-85-1@hmc.edu

Austin

Be sure you are on the class mailing list. You should have received email before the beginning of classes. If you did not receive mail, add yourself to the list or risk missing important late-breaking announcements. To subscribe, send email to listkeeper@hmc.edu with one line in the body:

subscribe eng-85-l

Alternatively, if you have an electronic version of the syllabus, you can click this paragraph to have your mail client autocomplete the email for you.

You also will need a Harvey Mudd College computer to complete your labs. If you are not a HMC student, email me your full name and school affiliation and I will request an account for you. You will complete most of your labs in the E85 lab, Parsons B183. See Professor Spjut for the door code. Hardware portions of the labs must be completed in the E85 lab, but other computers including

the ones in the ECF may be used for some parts of the labs. If you have issues with the software or computer systems in the lab, contact the system administrator, Willie Drake. He can often be found in his office inside the ECF, and after-hours contact information is typically posted on his door.

Course Objectives:

- To apply the principles of abstraction, modularity, hierarchy, and regularity in digital design
- To develop debugging skills by designing, building, and testing digital circuits using commercially available CAD (computer aided design) tools
- To design, build, and test your own microprocessor
- To understand what's under the hood of a computer

Grading:

Labs: 30% Problem Sets: 25% Midterm 1: 20% Midterm 2: 25%

There will be weekly labs and problem sets, a and two midterm exams. The first midterm will be taken in-class and the second will be a take-home exam. The first midterm is worth 20% of your grade and is closed-book, closed-notes. The second midterm is open-book, open-notes (your own notes, including course handouts) and is comprehensive, but biased towards the second half of the class. It is worth 25% of your grade.

The only way to really master the material in this class is to design a microprocessor. The labs in this class build upon each other and culminate in designing your own 32-bit MIPS microprocessor in Labs 10 and 11. You **must** complete these labs and demonstrate a working microprocessor to pass this class.

No late homework or labs will be accepted. However, you are allowed to drop one lab and one homework score. Homework is due at the beginning of class. You will lose 50% of the points on late homework turned in by the end of class. Labs are due electronically on Sakai by 12 noon on the due date. Even if you do not complete your microprocessor (labs 10 & 11) on time, you must still submit them before finals week to pass the class.

Your lowest lab and homework score will be dropped before the average is calculated. You are welcome to discuss labs and problem sets with other students or with the professor or lab assistants or tutors after you have made an effort by yourself. However, you must turn in your own work, not work identical to that of another person. Be sure to credit at the top of your assignment anyone with whom you discussed ideas. It is an honor code violation to simply copy someone else's work. Reading assignments are to be completed before class.

A suggestion for text preparation comes from reddit user **onanym**, "I usually write a cheat sheet, then memorize it so it's all in my head. That way, they can't possibly prove I'm cheating.

Genius." As a response, reddit user **leontes** added, "I used to [do] that, but I found I couldn't remember the details perfectly. So instead... I integrated the information on the cheat sheet into my prior existing knowledge, Coding it perfectly within my preexisting framework.

Not only could they not know I was regurgitating the cheat sheet, but since I had remembered it in terms of [stuff] I already knew, I was able to synthesize complex consequences from the source material so it seemed like original, derivated understanding! They never caught on!" From http://www.reddit.com/r/AskReddit/comments/11nbmz/im_a_political_science_professor_i_gave_my/ c6nzn34

Tentative Schedule: The schedule below is a tentative plan that may change during the semester. The deadlines, however, are fixed unless otherwise notified; do not assume that they will change just because the lecture schedule changes. Any changes to deadlines will be announced in class and sent to the class mailing list.

Monday	WEDNESDAY	Friday
Jan 21st Martin Luther King Jr. Day	23rd1Binary, logic gates, logiclevels1.1-1.5,A.1-A.2,A.5-A.7	25th2transistors; truth tables1.6, 1.7,1.9
28th 3 Boolean expressions; Boolean algebra 2.1-2.3 PS1 Due	30th4K-maps; Xs and Zs;multiplexers and decoders;priority circuit2.4-2.8	Feb 1st5timing; hazards; sequential circuits: SR latches2.9-2.10,3.1-3.2.1Lab1 Due
4th 6 Last Day to Add Classes D latches, flip-flops, clocking 3.2.2-3.3.3 PS2 Due	6th 7 finite state machines (FSMs) 3.4	8th 8 dynamic discipline 3.5.1-3.5.3 Lab2 Due
11th 9 metastability, parallelism 3.5.4-3.5.6,3.6, 3.7 PS3 Due	13th 10 System Verilog 1 4.1-4.3	15th 11 System Verilog 2 4.4-4.9 Lab3 Due 11
18th12System Verilog 3 PS4 Due	20th13arithmetic: adders,subtractors, comparators5.1-5.2.5	22nd 14 ALUs 5.2.6-5.2.8 Lab4 Due
25th15number systems: fixed &floating5.3 PS5 Due	27th 16 sequential building blocks: counter, shift register, memory arrays: RAMs, ROMs 5.4, 5.5	Mar 1st17logic arrays: PLAs, FPGAs5.6, 5.7Lab5 Due
4th 18 Problems/Review	6th 19 Problems/Review	8th 20 End E85A Midterm #1
11th21C-programming 1c.1-c.4	13th22C-programming 2c.5-c.8	15th23C-programming 3c.9-c.11Lab6 Due
18th Spring Break	20th Spring Break	22nd Spring Break

Monday	WEDNESDAY	Friday
25th 24	27th 25	29th
MIPs instruction set and	branches & procedure calls	Cesar Chavez Day
registers	6.4	
6.1-6.3	Lab7 Due	
Apr 1st 26	3rd 27	5th 28
addressing modes	linking & launching	single-cycle processor data
6.5	applications	path
PS6 Due	6.6-6.7.1	7.1-7.3.1
		Lab8 Due
8th 29	10th 30	12th 31
single-cycle processor control	multi-cycle processor 1	Last Day to Drop Classes
7.3.2-7.3.4	7.4.1	multi-cycle processor 2
PS7 Due		7.4.2-7.4.4
		Lab9 Due
15th 32	17th 33	19th 34
pipelining 1	pipelining hazards and stalls	exceptions and advanced
7.5.1	7.5.2-7.5.5	microarchitecture
PS8 Due		7.7-7.8
		Lab10 Due
22nd 35	24th 36	26th 37
memory system, performance	caches	caches and virtual memory
8.1, 8.2	8.3	8.4
PS9 Due		Lab11 Due
29th 38	May 1st 39	3rd 40
Review	memory-mapped, embedded	Last Day of Classes
PS10 Due	and PC I/O	No Lecture
Midterm #2 Distributed	8.5-8.7	Midterm $#2$ Due by
		Noon