
 1 © 2014 David Money Harris and Sarah L. Harris

Introduction
In this lab you will build a simplified ARM single-cycle processor using SystemVerilog. You
will combine your ALU from Lab 5 with the code for the rest of the processor taken from the
textbook. Then you will load a test program and confirm that the system works. Next, you will
implement two new instructions, and then write a new test program that confirms the new
instructions work as well. By the end of this lab, you should thoroughly understand the internal
operation of the ARM single-cycle processor.
Please read and follow the instructions in this lab carefully. In the past, many students have lost
points for silly errors like not printing all the signals requested.
Before starting this lab, you should be very familiar with the single-cycle implementation of the
ARM processor described in Section 7.3 of the Chapter 7 ARM draft, Digital Design and
Computer Architecture. The single-cycle processor schematic from the text is repeated at the end
of this lab assignment for your convenience. This version of the ARM single-cycle processor can
execute the following instructions: ADD, SUB, AND, ORR, LDR, STR, and B.

Our model of the single-cycle ARM processor divides the machine into two major units: the
control and the datapath. Each unit is constructed from various functional blocks. For example,
as shown in the figure on the last page of this lab, the datapath contains the 32-bit ALU that you
designed in Lab 5, the register file, the sign extension logic, and five multiplexers to choose
appropriate operands.

1. ARM Single-Cycle Processor
The SystemVerilog single-cycle ARM module is given in Section 7.6 of the text. Use the
electronic versions of all these files are in the class directory. Copy them to your own lab9_xx
folder.
Study the files until you are familiar with their contents. Look in arm.sv. The top-level module
(named top) contains the arm processor (arm) and the data and instruction memories (dmem
and imem). Now look at the processor module (called arm). It instantiates two sub-modules,
controller and datapath. Now take a look at the controller module and its
submodules. It contains two sub-modules: decode and condlogic. The decode module
produces all but three control signals. The condlogic module produces those remaining three
control signals that update architectural state (RegWrite, MemWrite) or determine the next
PC (PCSrc). These three signals depend on the condition mnemonic from the instruction

Digital Design and Computer Architecture

Lab 9: ARM Single-Cycle Processor

 2 © 2014 David Money Harris and Sarah L. Harris

(Cond3:0) and the stored condition flags (Flags3:0) that are internal to the condlogic
module. The condition flags produced by the ALU (ALUFlags3:0) are updated in the flags
registers dependent on the S bit (FlagW1:0) and on whether the instruction is executed (again,
dependent on the condition mnemonic Cond3:0 and the stored value of the condition flags
Flags3:0). Make sure you thoroughly understand the controller module. Correlate signal names
in the SystemVerilog code with the wires on the schematic.

After you thoroughly understand the controller module, take a look at the datapath
SystemVerilog module. The datapath has quite a few submodules. Make sure you understand
why each submodule is there and where each is located on the ARM single-cycle processor
schematic. You’ll notice that the alu module is not defined. Copy your ALU from Lab 5 into
your lab9_xx directory. Be sure the module name matches the instance module name (alu), and
make sure the inputs and outputs are in the same order as in they are expected in the datapath
module.
The instruction and data memories instantiated in the top module are each a 64-word × 32-bit
array. The instruction memory needs to contain some initial values representing the program.
The test program is given in Figure 7.60 of the draft textbook. Study the program until you
understand what it does. The machine language code for the program is stored in memfile.dat.

2. Testing the single-cycle ARM processor
In this section, you will test the processor with your ALU.
In a complex system, if you don’t know what to expect the answer should be, you are unlikely to
get the right answer. Begin by predicting what should happen on each cycle when running the
program. Complete the chart in Table 1 at the end of the lab with your predictions. What address
will the final STR instruction write to and what value will it write?

Simulate your processor with ModelSim. Refer to your earlier lab handouts if you need a
refresher on how to use ModelSim. Be sure to add all of the .sv files, including the one
containing your ALU. Add all of the signals from Table 1 to your waves window. (Note that
many are not at the top level; you’ll have to drill down into the appropriate part of the hierarchy
to find them.)

Run the simulation. If all goes well, the testbench will print “Simulation succeeded.” Look at the
waveforms and check that they match your predictions in Table 1. If they don’t, the problem is
likely in your ALU or because you didn’t properly add all of the files.
If you need to debug, you’ll likely want to view more internal signals. However, on the final
waveform that you turn in, show ONLY the following signals in this order: clk, reset, PC,
Instr, ALUResult, WriteData, MemWrite, and ReadData. All the values need to be
output in hexadecimal and must be readable to get full credit.

After you have fixed any bugs, print out your final waveform.

3. Modifying the ARM single-cycle processor
You now need to modify the ARM single-cycle processor by adding the EOR and LDRB
instructions. First, modify the ARM processor schematic/ALU at the end of this lab to show
what changes are necessary. You can draw your changes directly onto the schematics. Then

 3 © 2014 David Money Harris and Sarah L. Harris

modify the main decoder and ALU decoder as required. Show your changes in the tables at the
end of the lab. Finally, modify the SystemVerilog code as needed to include your modifications.

4. Testing your modified ARM single-cycle processor
Next, you’ll need a test program to verify that your modified processor works. The program
should check that your new instructions work properly and that the old ones didn’t break. Use
memfile2.asm below.

; memfile2.asm
; david_harris@hmc.edu and sarah_harris@hmc.edu 3 April 2014
MAIN SUB R0, R15, R15
 ADD R1, R0, #255
 ADD R2, R1, R1
 STR R2, [R0, #196]
 EOR R3, R1, #77
 AND R4, R3, #0x1F
 ADD R5, R3, R4
 LDRB R6, [R5]
 LDRB R7, [R5, #1]
 SUBS R0, R6, R7
 BLT MAIN
 BGT HERE
 STR R1, [R4, #110]
 B MAIN
HERE STR R6, [R4, #110]

Figure 1. ARM assembly program: memfile2.asm

Convert the program to machine language and put it in a file named memfile2.dat. Modify imem
to load this file. Modify the testbench to check for the appropriate address and data value
indicating that the simulation succeeded. Run the program and check your results. Debug if
necessary. When you are done, print out the waveforms as before and indicate the address and
data value written by the final STR instruction.

What to Turn In
Please turn in each of the following items, clearly labeled and in the following order:

1. Please indicate how many hours you spent on this lab. This will not affect your grade
(unless omitted), but will be helpful for calibrating the workload for next semester’s labs.

2. A completed version of Table 1.
3. An image of the simulation waveforms showing correct operation of the processor. Does it

write the correct value to address 100?
The simulation waveforms should give the signal values in hexadecimal format and should
be in the following order: clk, reset, PC, Instr, ALUResult, WriteData,

 4 © 2014 David Money Harris and Sarah L. Harris

MemWrite, and ReadData. While you may print more signals during debug, do not
display any other signals in the waveform you submit. Check that the waveforms are zoomed
out enough that the grader can read your bus values. Unreadable waveforms will receive no
credit. Use several pages and multiple images as necessary.

4. Marked up versions of the datapath schematic and decoder tables that adds the EOR and
LDRB instructions.

5. Your SystemVerilog code for your modified ARM computer (including EOR and LDRB
functionality) with the changes highlighted and commented in the code.

6. The contents of your memfile2.dat containing your machine language code.
7. An image of the simulation waveforms showing correct operation of your modified processor

on the new program. What address and data values are written by the final STR instruction?

 5 © 2014 David Money Harris and Sarah L. Harris

Cycle reset PC Instr SrcA SrcB Branch AluResult
Flags3:0
[NZCV] CondEx WriteData MemWrite ReadData

1 1 00
SUB R0, R15, R15
E04F000F 0 0 0 0 ? 1 0 0 x

2 0 04
ADD R2, R0, #5
E2802005 0 5 0 5 ? 1 5 0 x

3 0 08
ADD R3, R0, #12
E280300C 0 C 0 C ? 1 C 0 x

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
Table 1. First nineteen cycles of executing armtest.asm (all in hexadecimal, except Flags3:0 in binary)

 6 © 2014 David Money Harris and Sarah L. Harris

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

"
Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8 R15

3:0

Cond31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
egSrc

Figure 2. Single-cycle ARM processor

 7 © 2014 David Money Harris and Sarah L. Harris

+

00

A B

Cout

Result

01

A
LU
C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2
011011

Zero

ALUControl1

Sum31

NegativeCarry

ALUControl0

A31
B31

Flags
4

ZN VC

Sum31

oVerflow

Figure 3. ARM ALU

 8 © 2014 David Money Harris and Sarah L. Harris

Table 2. Extended functionality: Main Decoder

O
p#

Funct5 #

Funct0 #

Type#

Branch#

M
em

toReg#

M
em

W
#

ALU
Src#

Im
m
Src#

RegW
#

RegSrc#

ALU
O
p#

00" 0" X" DP"Reg" 0" 0" 0" 0" XX" 1" 00" 1"
00" 1" X" DP"Imm" 0" 0" 0" 1" 00" 1" X0" 1"
01" X" 0" STR 0" X" 1" 1" 01" 0" 10" 0"
01" X" 1" LDR 0" 1" 0" 1" 01" 1" X0" 0"
10" X" X" B 1" 0" 0" 1" 10" 0" X1" 0"

Table 3. Extended functionality: ALU Decoder

ALUOp& Funct4:1#(cmd)# Funct0#(S)# Notes# ALUControl1:0# FlagW1:0#
0" X" X" Not"DP" 00" 00"
1"
"

0100" 0 ADD 00" 00"
1 11"

0010" 0 SUB 01" 00"
1 11"

0000" 0 AND 10" 00"
1 10"

1100" 0 ORR 11" 00"
1 10"

