
Page 1 of 7

Introduction
In this lab, you will learn to write ARM assembly language programs and test them on a
Raspberry Pi, featuring the BCM2835 microprocessor. You’ll learn about some of the assembler
directives necessary to write a real program. You’ll also learn to use the graphical debugger,
ddd, to watch register values change as you step through your code.

First, you will write a simple assembly language program to compute the Fibonacci numbers.
Then you will write a more sophisticated program to perform floating point addition.

GNU ARM Assembly Language Programming for the Raspberry Pi
For additional details on connecting to the lab Pis, refer to the Hitchhiker’s Guide.

Under Raspbian, assembly language programming is made possible through GNU. Since the
assembler is from GNU, a number of shortcuts and keywords may be different from those listed
at infocenter.arm.com.

GNU ARM Assembly supports two types of code comments. An @ character will comment out
any text after it on the same line, and /* block comments */ can be defined that span
multiple lines.

Every program must contain at least one function, named main. The .global main
directive tells the compiler that a function named main exists. Additionally, a code label main:
is placed at the beginning of the function. Labels can be used as the target of jump and branch
instructions and can be placed anywhere in your code.

Getting Started:
To begin, copy the template folder and retitle it with your initials, an operation completed by
with one line in the terminal:

cp –r Lab8Fib Lab08Fib_xx
To open the file, enter the folder and invoke geany with the name of the *.s file as an argument
like so:

geany Lab8Fib.s
Don’t forget that you must (1) enable X11 forwarding in PUTTY and (2) launch XMing with
XLaunch. (See the Hitchhiker’s for info on how to do this.)

Digital Design and Computer Architecture
Harris and Harris, © Elsevier, 2007

Lab 8: MIPS Assembly Language Programming

Digital Design and Computer Architecture
J. Spjut

Lab 8: ARM Assembly Language Programming

Page 2 of 7

Fibonacci Numbers
Refer to your Lab 6 for information about the Fibonacci numbers. Write an assembly language
program to calculate the 8th Fibonacci number. To get you started, here is a template for the body
of the assembly program that you should write:

/************* CODE SECTION *************/

.text @ the following is executable assembly

@ Ensure code section is 4-byte aligned:

.balign 4

@ main is the entry point and must be global

 .global main

 B main @ begin at main

/************* MAIN SECTION *************/

main:

 MOV r4, #13 @ load nth fibonacci number here

 MOV r0, #0

 MOV r1, #1 @ Load first two fibonacci numbers

loop:

 B loop

done:

 BX lr @ exit cleanly

.end @ end of code

Note that the first line of code places the value 13 into r4. This is the n argument to the fib
function. It is wise to test your program on several different values (not just 13).

The second and third lines of code load the values of fib(-1) = 1 and fib(0) = 0 into
$s0 and $s1, respectively. These can be used to “jumpstart” your loop.

After looping the number of times your code should place the final value in one of the registers.

Fill in the missing lines of code to complete the loop that computes fib(n).

Assembling and Running:

To run your code, the assembler must first format your text file into acceptable machine code. To
do so, you will use the following command-line incantation:

gcc –g –o Lab08_xx Lab08_xx.s

The –g argument tells the assembler to assemble the code in a format that can be viewed for
debugging. The –o argument specifies that we, the user, would like to create an output file, with
the name Lab08_xx as the name of the executable. The final argument is the name of the input
file. Change these file names such that they match those with your initials.

Page 3 of 7

Notice that building your code creates an executable, highlighted in the directory. (To see it, list
the directory contents with ls at the terminal.

To run your code and verify that it behaves as you expect, we’ll be running it through the
graphical debugger, ddd. To open your file with ddd, simply enter the following into the
terminal:

ddd Lab08_xx

Step through your code and verify that the final value in the register of your choice matches the
value holding the 8th Fibonacci number.

Floating Point Addition
Next, write an ARM assembly language function that performs floating-point addition. For the
purposes of this assignment, you cannot use the ARM instructions specific to manipulating
floating point numbers. While this is not the traditional method for implementing floating-point
arithmetic, a number of the techniques implemented here are practical in numerous other
applications.

The IEEE 754 Floating-Point Standard is described with more detail in the text. Here we will be
dealing only with positive single precision floating-point values, which are formatted as in
Figure 1 (this is also described in Section 5.3.2 of your book).

Sign Exponent (8 bits) Fraction (23 bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 . . . 0

Figure 1: IEEE 754 Single-Precision Floating-Point Format

Remember that the exponent is biased by 127, which means that an exponent of zero is
represented by 127 (01111111). (The exponent is not encoded using two’s complement.)
The mantissa is always positive, and the sign bit is kept separately. Note that the actual mantissa
is 24 bits long: the first bit is always a 1 and thus does not need to be stored explicitly. This will
be important to remember when you write your function!

There are several details of IEEE 754 that you will not have to worry about in this lab. For
example, the exponents 00000000 and 11111111 are reserved for special purposes that are
described in your book (representing zero, denormalized numbers, and NaN’s). Your addition
function will only need to handle strictly positive numbers, and thus these exponents can be
ignored. Also, you will not need to handle overflow and underflows.

To implement floating-point addition in assembly language, you will need to extract the distinct
values from their corresponding bit-fields. To do so, a few techniques below have been listed.

Shifts: Performing a left or right-shift will correspondingly remove bits that are shifted
out. Thus, by shifting a value left and right, it’s possible to extract a certain sequential subset of
bits.
Bit-Masking: Another manner of extracting a certain set of bits from the bit-fields is by
“and”ing the value of interest with a special value, called a bit-mask. Thus, the output of the

Page 4 of 7

and operation is a new value containing only the desired bits. For a quick example, see the
operation in action below:

0000 0000 0110 1101 0001 0110 1110 0111
0000 0000 0011 1111 1111 0000 0000 0000

0000 0000 0010 1101 0001 0000 0000 0000

In a sense, a bit-mask is very much like a filter, only allowing desired bits to pass through while
zeroing the rest. Bit-masking is powerful for extracting bits in arbitrary locations.
OR-ing: “OR”-ing registers together is a handy way to combine bit-fields:

0000 0000 0011 0110 0010 1101 0001 1111

1100 1010 0000 0000 0000 0000 0000 0000

1100 1010 0011 0110 0010 1101 0001 1111

Hand Analysis
Before implementing floating point addition, re-familiarize yourself with the representation of
floating point numbers and with carrying out addition by hand by answering the following
questions. Give your answers in binary and hexadecimal. For example, 1.0 is written as an
IEEE single-precision floating point number as:
1.0 = 0 01111111 00000000000000000000000 = 3F80000016

a) Write 2.0 as an IEEE single-precision floating point number.

b) Write 3.5 as an IEEE single-precision floating point number.
c) Write 0.50390625 as an IEEE single-precision floating point number.

d) Write 65535.6875 as an IEEE single-precision floating point number.
e) Compute the sum of the numbers from (c) and (d) and express the result in IEEE floating

point format. Truncate the sum if necessary.

Writing the FP Addition Program
As with the previous lab, copy the template folder and rename it, adding your initials to the new
folder like so in the terminal:

cp –r Lab08Fib Lab08Fib_xx

Compile your code as you did with the previous assignment.
gcc –g –o Lab08Fib_xx Lab08Fib_xx.s

AND

OR

Page 5 of 7

Now step through your code with ddd like before. To verify that your code behaves as expected,
view the registers and examine the register holding the sum of your two floats.

For Full Credit:

• Your addition function need only handle strictly positive numbers, and need not detect
overflow or underflow.

• You need not perform rounding since it would be complicated and because truncation is
also a valid option (although less accurate).

Final Notes to Consider:

Your code will never actually need to perform a left shift for normalization, because of the
restriction that it only needs to handle strictly positive numbers. Convince yourself that this is
true before writing your code (think about the properties of the mantissas that get added and the
properties that follow for the resulting sum).

Again, it is important to note that the most significant bit of the mantissa is an implied 1. After
extracting the fraction bits by using masking, your code can use an or instruction to place the 1
back into the proper bit of the mantissas before performing addition on them. Having this
implied 1 bit in place in the mantissas will make the normalization step more straightforward.
Later, when your code reassembles a single floating-point value for its final result from a
separate mantissa and exponent, you will need to remove this implied 1 bit from in front of the
mantissa again.

Since your code will add only strictly positive numbers, the sign bits in the numbers being
summed can be ignored. The sign bit of the resulting sum should be set to zero.

The Algorithm:
In summary, your algorithm will need to do the following:

1) Mask and shift down the two exponents.
2) Mask the two fractions and append leading 1’s to form the mantissas.
3) Compare the exponents by subtracting the smaller from the larger. Set the exponent

of the result to be the larger of the exponents.
4) Right shift the mantissa of the smaller number by the difference between exponents to

align the two mantissas.
5) Sum the mantissas.
6) Normalize the result. I.e., if the sum overflows, right shift by 1 and increment the

exponent by 1.
7) Round the result (truncation is fine).
8) Strip the leading 1 off the resulting mantissa, and merge the sign, exponent, and

fraction bits.
As a guideline: you should be able to implement the floating-point addition algorithm in under
50 lines of code; the solution uses 31 lines.

Page 6 of 7

Testing your Program:
Test your program on the following examples:

1.0 + 1.0 = 2.0 (0x3F800000 + 0x3F800000 = 0x40000000)
2.0 + 1.0 =

3.0 + 3.5 =
0.50390625 + 65535.6875 =

If your code is not working, don’t panic! You now have the opportunity to practice debugging
assembly language code. Predict the result of each line of code for a known (and preferably
simple) set of inputs. Step through the code one line at a time. Check that after each step, the
results are what you expect they should be. When the results differ, you have found your bug.
Correct your code, restart the simulation, and single step again until you verify that the correct
answer is now produced.

What to Turn In:
Include each of the following in the following order in your submission. Clearly label each part
by number.

1. Please indicate how many hours you spent on this lab. This will not affect your grade (unless
entirely omitted), but will be helpful for calibrating the workload for next semester’s labs.

2. Your completed, thoroughly commented fib_xx.s code. Uncommented or hard to read code
will lose points.

3. What value did your program leave for fib(8) the register containing your answer?

4. Your answers to the floating-point hand analysis questions.

5. The code that you inserted into fpadd_xx.s, including your complete function that performs
floating-point addition.

6. The results of your four addition tests cases.
7. EXTRA CREDIT: Add support for negative numbers to your function. This requires the

following significant modifications, which could take approximately another 30 lines of
code:

§ Extracting the sign bits from the arguments and handling them appropriately
§ Negating the mantissas for negative numbers before adding them.

§ Adding support for doing the proper number of left shifts (which will now be needed)
in the normalization step

§ Setting the sign bit of the result properly and negating the mantissa of the result when
needed

If you do the extra credit, turn in a list of difficult cases that you tested and show that the
algorithm produced the correct result. Choose the cases that are most likely to stress the
algorithm. Your score on this extra credit assignment can substitute for one entire homework
grade.

Page 7 of 7

Resources:

1. http://www.h-schmidt.net/FloatConverter/

a. A Floating-point calculator

