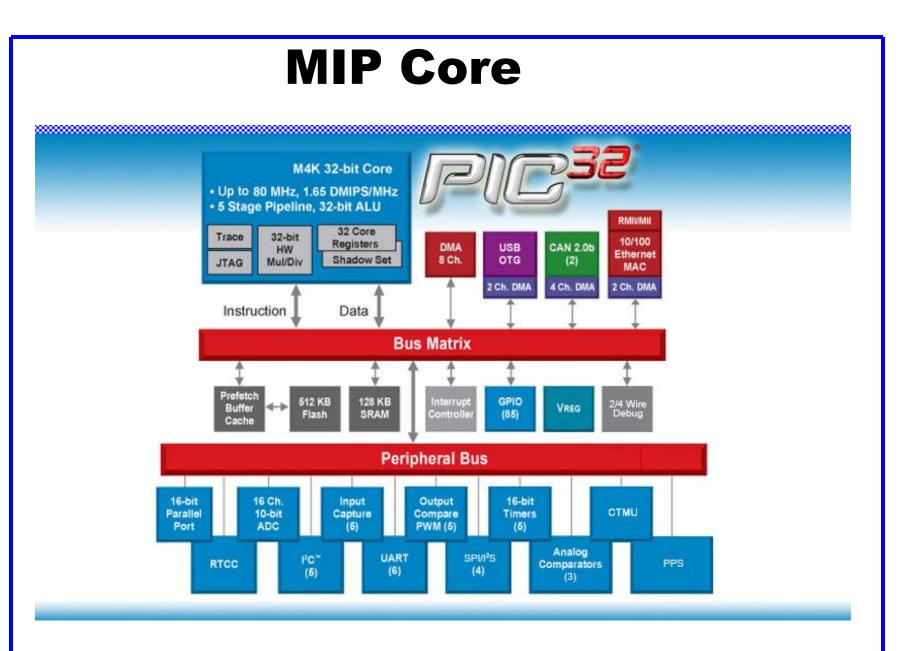
PIC32 Overview

E155

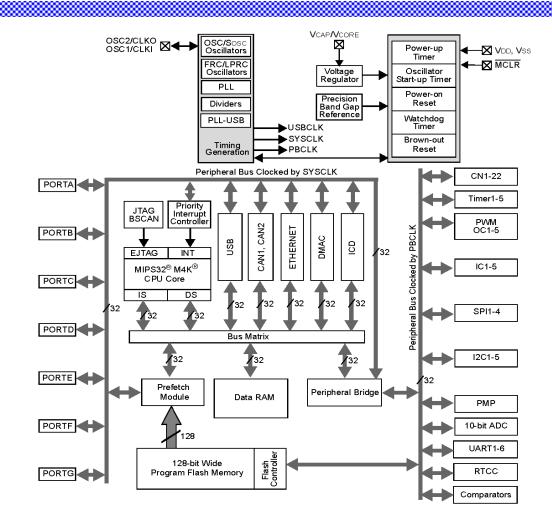
Outline

PIC³² Architecture
 MIPS M4K Core
 PIC³² Peripherals
 PIC³² Basic Operations
 Clock

Microcontroller


- Approximately \$16B of microcontrollers were sold in 2011, and the market continues to grow by about 10% a year.
- Microcontrollers have become ubiquitious and nearly invisible, with an estimated 150 in each home and 50 in each automobile in 2010.
- The 8051 is a classic 8-bit microcontroller originally developed by Intel in 1980 and now sold by a host of manufacturers.
- Microchip's PIC16 and PIC18-series are 8-bit market leaders. PIC(Peripheral Interface Controller)

Microcontroller


- The Atmel AVR series of microcontrollers has been popularized among hobbyists as the brain of the Arduino platform.
- Among 32-bit microcontrollers, Renesas leads the overall market, while ARM is a major player in mobile systems including the iPhone. Freescale, Samsung, Texas Instruments, and Infineon are other major microcontroller manufacturers.
- Focus on the PIC32MX675F512H, a member of Microchip's PIC32-series of microcontrollers based on the 32-bit MIPS microprocessor.

Microcontrollers

- The PIC32 family also has a generous assortment of on-chip peripherals and memory
- □ Selected this family
 - Inexpensive, easy-to-use development environment
 - Based on the MIPS
- Microchip is a leading microcontroller vendor that sells more than a billion chips a year.
- Microcontroller I/O systems are quite similar from one manufacturer to another, so the principles illustrated on the PIC32 can readily be adapted to other microcontrollers.

PIC³²(PIC32MX675F512H)

□ MIPSM4K Core

- Up to 80 MHz, 1.65 DMIPS/MHz
- 5 Stage Pipeline devices
- Instruction Trace
- Temperature Range: -40°C to 105°C
- AEC-Q100 qualified
- Data and Code
 - Up to 512 KB Flash (program code)
 - Up to 64 KB SRAM (data)
 - Prefetch Buffer 256KB Cache
 - Separate Buses for Instructions and Data

PIC³² Peripheral Interconnect

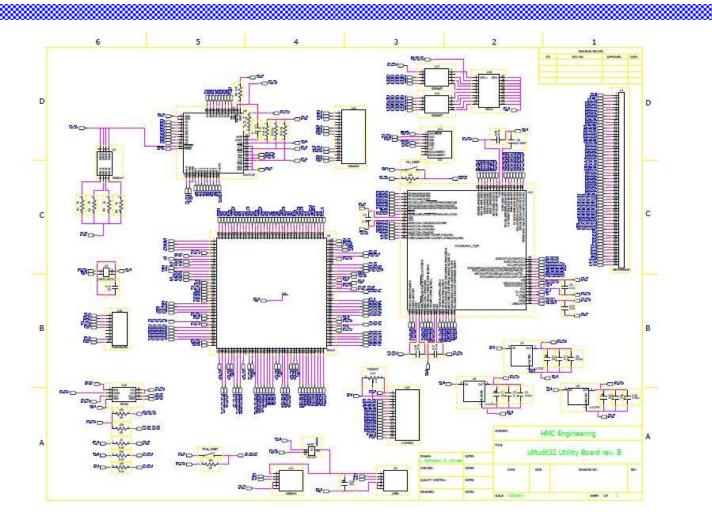
Connected Peripherals with DMA

- Full-speed USB Host/Device/OTG
- 10/100 Ethernet MAC with MII/RMII Interfaces
- 2x CAN 2.0B Ports
- Up to 6 UART, 4 I²C[™], 3 SPI Ports, CTMU and I S
- Up to 8 Additional Channels of General Purpose DMA

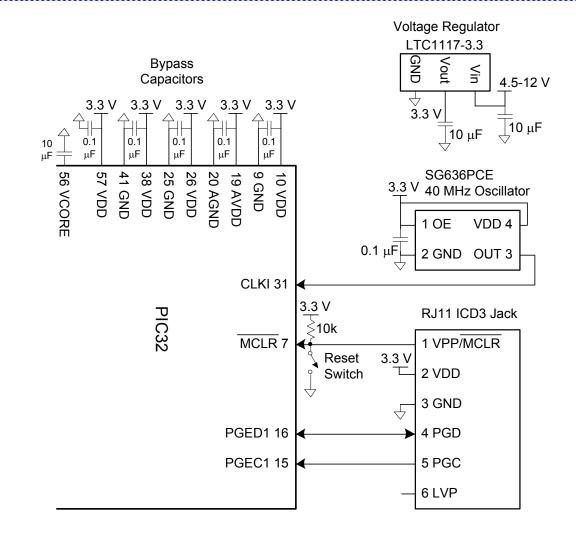
PIC³² Peripheral Features

Parameter Name	Value
Family	PIC32MX6xx
Max Speed MHz	80
Program Memory Size (KB)	512
RAM (KB)	64
Temperature Range (C)	-40 to 105
Operating Voltage Range (V)	2.3 to 3.6
DMA Channels	8
SPI™	3
I ² C [™] Compatible	4
CTMU	NO
USB (Channels, Speed, Compliance	1,FS Host/OTG,USB 2.0 OTG
A/D channels	16
Max A/D Sample Rate (KSPS)	1000
Input Capture	5
Output Compare/Std. PWM	5
16-bit Digital Timers	5
Parallel Port	PMP
Comparators	2
Internal Oscillator	8 MHz, 32 kHz
RTCC	Yes
I/O Pins	53
Pin Count	64

PIC³² Virtual Memory Map


	Virtual Memory Map	****
0xFFFFFFFF 0xBFC03000	Reserved	
0xBFC02FFF	Device Configuration	
0xBFC02FF0 0xBFC02FEF	Registers	
0xBFC00000	Boot Flash	
0xBF900000	Reserved	
0xBF8FFFFF	SFRs	
0xBF800000	Reserved	
0xBD080000 0xBD07FFFF	Reserved	
0xBD000000	Program Flash	
0xA0020000	Reserved	
0xA001FFFF	RAM	
0xA0000000		

PIC32 PinOut and Package


PIC32MX6xxFxxH pinout. Black pins are 5 V-tolerant EMDIO/AEMDIO/SCK3/U4TX/U1RTS/O0 ETXCLK/AERXERR/CN16/RD ERXCLK/EREFCLK/PMD3/RE AETXEN/ETXERR/CN15/RD6 _3/SD03/U1TX/0C4/RD3 ERXDV/ECRSDV/PMD2/RE OC5/IC5/PMWR/CN13/RD4 SDA3/SDI3/U1RX/0C3/RD2 AETXD0/ERXD2/RF1 AETXD1/ERXD3/RF0 ERXERR/PMD4/RE4 ERXD1/PMD0/RE0 ERXD0/PMD1/RE1 PMRD/CN14/RD6 ICAP/NCORF 63 62 61 60 52 51 50 49 48 SOSCO/T1CK/CN0/RC14 ETXEN/PMD5/RE5 SOSCI/CN1/RC13 47 ETXD0/PMD6/RE6 46 OC1/INT0/RD0 ETXD1/PMD7/RE7 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 SCK2/U6TX/U3RTS/PMA5/CN8/RG6 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 SDA4/SDI2/U3RX/PMA4/CN9/RG7 44 AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 43 SCL4/SDO2/U3TX/PMA3/CN10/RG8 PIC32MX664F064H RTCC/AERXD1/ETXD3/IC1/INT1/RD8 42 MCLR PIC32MX664F128H 41 🗌 Vss SS2/U6RX/U3CTS/PMA2/CN11/RG9 PIC32MX675F256H OSC2/CLKO/RC15 40 Vss q PIC32MX675F512H 39 OSC1/CLKI/RC12 VDD 10 PIC32MX695F512H 38 🗍 VDD AN5/C1IN+/VBUSON/CN7/RB5 11 D+/RG2 37 AN4/C1IN-/CN6/RB4 12 36 D-/RG3 AN3/C2IN+/CN5/RB3 13 35 VUSB AN2/C2IN-/CN4/RB2 14 34 VBUS PGEC1/AN1/VREF-/CVREF-/CN3/RB1 15 33 USBID/RF3 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 16 PIC32 in 64-pin TQFP package 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _____ AVSS TD0/AN10/CVREFOUT/PMA13/RB10 TD0/AN11/PMA12/RB11 V55 PGE C2/AN6/OCFA/RB6 ANB/SS4/U5RX/U2CTS/C10UT/RB8 AN9/C20UT/PMA7/RB9 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 SD45/SD14/U2RX/PMA9/CN17/RF4 SCL5/SD04/U2TX/PMA8/CN18/RF5 PGED2/AN7/RB AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB1 TCK/AN12/PMA11/RB TDI/AN13/PMA10/RB IN GOD 200 YE TRUST

uMudd32 Board

schematic_revB.tif

PIC Basic Operation

14

PIC Basic Operation

Microchip ICD3

- Program the microcontroller is with a Microchip *In Circuit Debugger* (ICD) 3, or a puck.
- Communicate with the PIC32 from a PC to download code and to debug the program.
- Connects to a USB port on the PC and to a six-pin RJ-11 modular connector (US telephone jacks) on the PIC32 development board.
- The ICD3 communicates with the PIC over a 2-wire In-Circuit Serial Programming interface with a clock and a bidirectional data pin.
- Programming by using Microchip's free MPLAB Integrated Development Environment (IDE) to write your programs in assembly language or C, debug them in simulation, and download and test them on a development board by means of the ICD.

Timers

 \Box 5 timers:

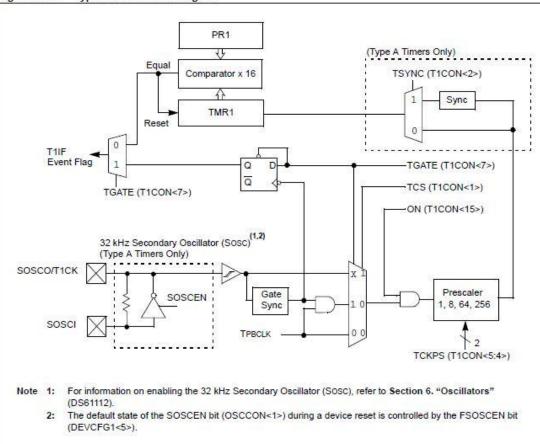
- Timer1 (Type A)
- Timers 2/3, Timers4/5 (TypeB) 16-bit timer/counter

Common features:

- Software-selectable internal or external clock source
- Programmable interrupt generation and priority
- Gated external pulse counter

Timers

I Type A:


- Asynchronous timer/counter with a built-in oscillator
- Operational during CPU Sleep mode
- Software selectable prescalers 1:1, 1:8, 1:64 and 1:256

Type B:

- Ability to form a 32-bit timer/counter
- Software prescalers 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and 1:256
- Event trigger capability

Type B Timer Block Diagram

Figure 14-1: Type A Timer Block Diagram

Timer Registers

Table 14-2:		s SFR Sumr		-					
Name	Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
T1CON ^(3,4,5)	31:24		-	-	-	-	-	—	-
	23:16	-	-	-	-	—	-	-	
	15:8	ON	FRZ	SIDL	TWDIS	TWIP	-	—	
	7:0	TGATE	-	TCKP	S<1:0>	-	TSYNC	TCS	
TxCON ^(3,4,5)	31:24		-	-	-	-	-		
	23:16	-	-	-	—		. 	—	
	15:8	ON	FRZ	SIDL	—	—	-	—	
	7:0	TGATE	TCKPS<2:0>(2)			T32 ⁽¹⁾	-	TCS	
TMRx ^(3,4,5)	31:24		-	-	-	-	-	-	-
	23:16	-	-	-	-	-	-	—	-
	15:8	TMRx<15:8>							
	7:0	TMRx<7:0>							
PRx ^(3,4,5)	31:24	-	-	-	-	-	-	—	-
	23:16		-	-	—		-		
	15:8	PRx<15:8>							
	7:0		PRx<7:0>						

•TxCON: 16-bit control register associated with the timer

•TMRx: 16-bit timer count register

•PRx: 16-bit register associated with the timer

Timer1 Register

r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
			-	—	-	-	-
bit 31						ta de de	bit 24
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
-	1 1 <u></u> -		-	-	—	-	
bit 23				9 8-		à à	bit 16
R/W-0	R/W-0	R/W-0	R/W-0	R-0	r-0	r-0	r-0
ON ⁽¹⁾	FRZ(2)	SIDL	TWDIS	TWIP	—	_	—
bit 15					••••••	ta ,to	bit 8
R/W-0	r-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	r-0
TGATE	-	TCKPS<1:0>		—	TSYNC	TCS	-
bit 7					•		bit 0
Legend:							
R = Readable b	it	W = Writable	bit	P = Program	mable bit	r = Reserved I	bit
U = Unimpleme	nted bit	-n = Bit Value	at POR: ('0' '1	' x = Unknov	(m)		

Timer1 Control Registers

- bit 31-16 **Reserved:** Write '0'; ignore read
- bit 15 **ON:** Timer On bit(1)
 - 1 = Timer is enabled
 - 0 = Timer is disabled
- bit 14 FRZ: Freeze in Debug Exception Mode bit(2)
 - 1 = Freeze operation when CPU is in Debug Exception mode
 - 0 = Continue operation even when CPU is in Debug Exception mode
 - bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode
- bit 12 **TWDIS:** Asynchronous Timer Write Disable bit
 - 1 = Writes to TMR1 are ignored until pending write operation completes
 - 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
- bit 11 **TWIP:** Asynchronous Timer Write in Progress bit
 - In Asynchronous Timer mode:
 - 1 = Asynchronous write to TMR1 register in progress
 - 0 = Asynchronous write to TMR1 register complete
 - In Synchronous Timer mode:
 - This bit is read as '0'.
 - bit 10-8 **Reserved:** Write '0'; ignore read

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is writable only in Debug Exception mode. It is forced to '0' in normal mode.

Timer 1 Control Registers

- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit
 - When TCS = 1:
 - This bit is ignored and is read as '0'.
 - When TCS = 0:
 - 1 = Gated time accumulation is enabled
 - 0 = Gated time accumulation is disabled
- bit 6 **Reserved:** Write '0'; ignore read
- □ bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits
 - 11 = 1:256 prescale value
 - 10 = 1:64 prescale value
 - 01 = 1:8 prescale value
 - 00 = 1:1 prescale value
- bit 3 **Reserved:** Write '0'; ignore read
- bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
 - When TCS = 1:
 - 1 = External clock input is synchronized
 - 0 = External clock input is not synchronized
 - When TCS = 0:
 - This bit is ignored and is read as '0'.
- bit 1 TCS: Timer Clock Source Select bit
 - 1 = External clock from TxCKI pin
 - 0 = Internal peripheral clock
- bit 0 **Reserved:** Write '0'; ignore read

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is writable only in Debug Exception mode. It is forced to '0' in normal mode.

Count to 1 sec

TMRI prescale

Run periphery clock at $\frac{1}{4}$ speed or 10MHz Pclk=clk/4 Prescale by 256 Each count (0.1us) x 256 = 25.6us Count = $\frac{1 \, sec}{25.6 \, us}$ = 39062

Count to 1 sec

□ Start TMR1 at 0

□ Set T1CON

□ Wait for TMRI=39062

```
la
                  $t1, TMR1
                 $zero, 0($t1) # reset timer1
SW
#T1CON:
   # bit 15 = 1 On
   #
              14 = 1 FRZ (freeze on Debug exception)
   #
              5:4 = 11 Prescale by 256
ori $t1, $0, 16'b1100 0000 0011 0000
la $t0, T1CON
sw $t1 , 0($t0)
addi $t4, $0, 39062
la $t0, TMR1
poll:
      lw $t3, 0($t0) # t3=TMR1
      bne $t3, $t4, poll
      nop
```