Digital Engineering and Computer Architecture (E85) Fall 2013 Syllabus

Teaching Staff

Professor:	Josef Spjut Parsons 2362	josef_spjut@hmc.edu Office Hours by Appointment	
Lab Tutors: Lab Graders:	Vanessa Ronan Matthew Tambara	Dong-hyeon Park	Obosa Obazuaye
Homework Graders:	Ivan Wong	Obosa Obazuaye	

Schedule:

Lecture:	SHAN 3460	MW 1:15-2:30
Lab Tutor Hours:	E85 Lab	W 8-10, Th 8-10,10-12
TBP HW Tutor Hours:	Platt	Sat. 7-9, Sun 6-9

Textbook:

Harris & Harris, Digital Design and Computer Architecture, 2nd Ed., Morgan Kaufmann, 2012.

Electronic Communication

Class Web Page: http://www3.hmc.edu/~jspjut/class/e85 Class Email List: eng-85-1@hmc.edu

Be sure you are on the class mailing list. You should have received email before the beginning of classes. If you did not receive mail, add yourself to the list or risk missing important late-breaking announcements. To subscribe, send email to listkeeper@hmc.edu with one line in the body:

subscribe eng-85-l

Alternatively, if you have an electronic version of the syllabus, you can click this paragraph to have your mail client autocomplete the email for you.

You also will need a Harvey Mudd College computer to complete your labs. If you are not a HMC student, email me your full name and school affiliation and I will request an account for you. You will complete most of your labs in the E85 lab, Parsons B183. See Professor Spjut for the door code. Hardware portions of the labs must be completed in the E85 lab, but other computers including the ones in the ECF may be used for some parts of the labs. If you have issues with the software or computer systems in the lab, contact the system administrator, Willie Drake. He can often be found in his office inside the ECF, and after-hours contact information is typically posted on his door.

Course Objectives:

- To apply the principles of abstraction, modularity, hierarchy, and regularity in digital design
- To develop debugging skills by designing, building, and testing digital circuits using commercially available CAD (computer aided design) tools
- To design, build, and test your own microprocessor
- To understand what's under the hood of a computer

Grading:

Labs: 30% Problem Sets: 25% Midterm 1: 20% Final: 25%

There will be weekly labs and problem sets, a and two midterm exams. The first midterm will be taken in-class and the second will be a take-home exam. The first midterm is worth 20% of your grade and is closed-book, closed-notes. The second midterm is open-book, open-notes (your own notes, including course handouts) and is comprehensive, but biased towards the second half of the class. It is worth 25% of your grade.

The only way to really master the material in this class is to design a microprocessor. The labs in this class build upon each other and culminate in designing your own 32-bit MIPS microprocessor in Labs 10 and 11. You **must** complete these labs and demonstrate a working microprocessor to pass this class.

No late homework or labs will be accepted. However, you are allowed to drop one lab and one homework score. Homework is due at the beginning of class. You will lose 50% of the points on late homework turned in by the end of class. Labs are due electronically on Sakai by 3 pm on the due date. Even if you do not complete your microprocessor (labs 10 & 11) on time, you must still submit them before finals week to pass the class.

Your lowest lab and homework score will be dropped before the average is calculated. You are welcome to discuss labs and problem sets with other students or with the professor or lab assistants or tutors after you have made an effort by yourself. However, you must turn in your own work, not work identical to that of another person. Be sure to credit at the top of your assignment anyone with whom you discussed ideas. It is an honor code violation to simply copy someone else's work. Reading assignments are intended to be completed before class.

A suggestion for text preparation comes from reddit user **onanym**, "I usually write a cheat sheet, then memorize it so it's all in my head. That way, they can't possibly prove I'm cheating.

Genius." As a response, reddit user **leontes** added, "I used to [do] that, but I found I couldn't remember the details perfectly. So instead... I integrated the information on the cheat sheet into my prior existing knowledge, Coding it perfectly within my preexisting framework.

Not only could they not know I was regurgitating the cheat sheet, but since I had remembered it in terms of [stuff] I already knew, I was able to synthesize complex consequences from the source material so it seemed like original, derivated understanding! They never caught on!" From http://www.reddit.com/r/AskReddit/comments/11nbmz/im_a_political_science_professor_i_gave_my/ c6nzn34

Tentative Schedule: The schedule below is a tentative plan that may change during the semester. The deadlines, however, are fixed unless otherwise notified; do not assume that they will change just because the lecture schedule changes. Any changes to deadlines will be announced in class and sent to the class mailing list.

Monday	WEDNESDAY	Friday
Sep 2nd Labor Day	4th1Binary, logic gates, logiclevels1.1-1.5,A.1-A.2,A.5-A.7	6th
9th 2 transistors; truth tables, Boolean expressions; Boolean algebra 1.6, 1.7,1.9, 2.1-2.3	11th3K-maps; Xs and Zs;multiplexers and decoders;priority circuit; timing;hazards;2.4-2.10	13th Lab1 Due
16th4 PS1 Due Last Day to Add Classessequential circuits: SRlatches, D latches, flip-flops,clocking3.1-3.3.3	18th5finite state machines (FSMs)3.4	20th Lab2 Due
23rd6 PS2 Due dynamic discipline,metastability, parallelism3.5.1-3.5.6, 3.6, 3.7	25th 7 System Verilog 1 4.1-4.4	27th Lab3 Due
30th 8 PS3 Due System Verilog 2 4.5-4.9	Oct 2nd9arithmetic: adders,subtractors, comparators,ALUs5.1-5.2.8	4th Lab4 Due
7th10 PS4 Due number systems: fixed &floating5.3	9th11sequential building blocks: counter, shift register, memory arrays: RAMs, ROMs, logic arrays: PLAs, FPGAs 5.4, 5.5, 5.6, 5.7	11th Lab5 Due
14th12 PS5 Due Problems/Review	16th13MidtermIn Class	18th
21st Fall Break	23rd14C-programming 1c.1-c.6	25th

Monday	WEDNESDAY	Friday
28th 15	30th 16	Nov 1st
C-programming 2	MIPs instruction set and	Lab6 Due
c.7-c.11	registers	
	6.1-6.3	
4th 17	6th 18	8th
PS6 Due	linking & launching	Lab7 Due
branches & procedure calls,	applications	
addressing modes	6.6-6.7.1	
6.4-6.5		
11th 19	13th 20	15th
PS7 Due	multi-cycle processor	Lab8 Due
single-cycle processor data	7.4.4	
path and control		
7.1-7.3.4	2011	22.1
18th 21	20th 22	22nd
PS8 Due	exceptions and advanced	Lab9 Due
pipelining, hazards and stalls 7.5.1-7.5.5	microarchitecture 7.7-7.8	
		29th
PS9 Due	Lab10 Due	Thanksgiving
memory system, performance	caches and virtual memory 8.3-8.4	
8.1, 8.2		
Dec 2nd 25	4th 26	6th
PS10 Due	memory-mapped, embedded	Lab11 Due
Review	and PC I/O	
	8.5-8.7	
9th 27	11th 28	13th
Final Distributed	MicroPs Project Demo Day	Last Day of Classes
16th	18th	20th
Finals Due	Finals Week	Finals Week
Finals Week		