
Page 1 of 3

Multicycle Processor Completion
In this lab, you will complete your own multicycle MIPS processor! Please refer to your Lab 10
handout for an overview of the processor. In Lab 10, you created the control unit. In this lab you
will design the datapath and mem units and test your completed MIPS multicycle processor.

This lab uses the same testbench and generic parts as in Lab 9. Copy your mipstest.sv,
mipsparts.sv, and alu_xx.sv files from Lab 9 to your lab11_xx directory. Also copy
your mipsmulti_xx.sv file containing your controller from Lab 10.

Finally, copy the topmulti.sv and mipsmem.sv files containing the top-level module and
the memory from the lab11 folder on Charlie. Look over the files and see how they work.

Test Program
Use the same test program and memfile.dat from the first part of Lab 9 (given in Figure 7.60
of the text). Copy it to your lab11_xx directory.

As in Lab 9, it is very helpful to first predict the results of a test program before running the
program so that you know what to expect and can discover and track down discrepancies. Table
1, which is partially completed, lists the expected instruction trace while running the test
program. Complete the remainder of the table. Do this before you run simulations so you have a
set of expectations to check your results against; otherwise, it is easy to fool yourself into
believing that erroneous simulations are correct.

Notice that the instruction (instr) is fetched during state 0 and therefore not updated until state
1 of each instruction.

When the ALUResult will not be used (e.g. in the Decode state of a nonbranch instruction, or the
Writeback state of any instruction), you may indicate an ‘x’ for don’t care rather than predicting
the useless value that the processor will actually compute.

Datapath Design
Refer to Figure 1 in Lab 10 for the hardware modules you need to set up your datapath. Design
the datapath unit in SystemVerilog.
Remember that you may reuse hardware from earlier labs (such as the ALU, multiplexers,
registers, sign-extension hardware modules, register file, etc.) wherever possible.

Digital Design and Computer Architecture
J. Spjut

Lab 11: Multicycle Processor (Part 2)

Page 2 of 3

All of your registers should take a Reset input to reset the initial value to a known state (0). The
Instruction Register and PC also require enable inputs. Pay careful attention to bus connections;
they are an easy place to make mistakes.
Simulate your processor using the testbench given (mipstest.v). The Reset signal is set high
at first. Display, at a minimum, the PC, Instr, FSM state (from within your controller
module), SrcA and SrcB (from within your datapath), ALUResult, and Zero, and the control
word. You will likely want to add other signals to help debug. Check that your results match the
expectations from Table 1. If there are any mismatches, debug your design and fix the errors.
When you are finished – congratulations! You have built a microprocessor by yourself and have
proven your mastery of microarchitecture, SystemVerilog, FSMs, and logic design!

Debugging
Hopefully your lab will have at least one error so you will get to hone your debugging skills!
Here are some hints:

• Be sure you thoroughly understand how the MIPS multicycle processor is supposed to work.
This system is too complex to debug by trial and error. You should be able to predict what
value every signal should be at every point in time while debugging.

• In general, trace problems by finding the first point in a simulation where a signal has an
incorrect value. Don’t worry about later problems because they could have been caused by
the first error. Identify which circuit element is producing the bad output and add all its
inputs to the simulation. Repeat until you have isolated the problem.

What to Turn In
Include the following elements in the following order in your final submission. Clearly label
each part by number. Poorly organized submissions will lose points.
1. Please indicate how many hours you spent on this lab. This will not affect your grade

(unless completely omitted), but will be helpful for calibrating the workload for next
semester’s labs.

2. A completed copy of Table 1 indicating the expected outcome of running the test program.
3. SystemVerilog code of the datapath.

4. Simulation waveforms of the processor showing CLK, Reset, state, PC, instr, and ALUResult
in this order while running the test program. As always, output the values in hex (or decimal
if that is more readable) and make sure they are readable. Do the results match your
expectations? Does the program indicate Simulation Succeeded?

Page 3 of 3

Cycle Reset PC Instr (FSM)
state

SrcA SrcB ALUResult Zero Control
Word

1 1 00 0 0 00 04 04 0 5010
2 0 04 addi 20020005 1 04 x x 0 0030
3 0 04 addi 20020005 9 00 05 05 0 0420
4 0 04 addi 20020005 10 x x x 0 0800
5 0 04 addi 20020005 0 04 04 08 0 5010
6 0 08 addi 2003000c 1 08 x x 0 0030
7 0 08 addi 2003000c 9 00 0c 0c 0 0420
8 0 08 addi 2003000c 10 x x x 0 0800
9 0
10 0
11 0
12 0
13 0
14 0 10 or 00e22025 1 10 x x 0 0030
15 0 10 or 00e22025 6 03 05 07 0 0402
16 0 10 or 00e22025 7 x x x 0 0840
17 0 10 or 00e22025 0 10 04 14 0 5010
18 0 14 and 00642824 1 14 x x 0 0030
19 0 14 and 00642824 6 0c 07 04 0 0402
20 0 14 and 00642824 7 x x x 0 0840
21 0 14 and 00642824 0 14 04 18 0 5010
22 0 18 add 00a42820 1 18 x x 0 0030
23 0 18 add 00a42820 6 04 07 0b 0 0402
24 0 18 add 00a42820 7 x x x 0 0840
25 0 18 add 00a42820 0 18 04 1c 0 5010
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0 30 add 00853820 1 30 x x 0 0030
41 0 30 add 00853820 6 01 0b 0c 0 0402
42 0 30 add 00853820 7 x x x 0 0840
43 0 30 add 00853820 0 30 04 34 0 5010
44 0 34 sub 00e23822 1 34 x x 0 0030
45 0 34 sub 00e23822 6 0c 05 07 0 0402
46 0 34 sub 00e23822 7 x x x 0 0840
47 0 34 sub 00e23822 0 34 04 38 0 5010
48 0 38 sw ac670044 1 38 x x 0 0030
49 0 38 sw ac670044 2 0c 44 50 0 0420
50 0 38 sw ac670044 5 x x x 0 2100
51 0 38 sw ac670044 0 38 04 3c 0 5010
52 0 3c lw 8c020050 1 3c x x 0 0030
53 0 3c lw 8c020050 2 00 50 50 0 0420
54 0 3c lw 8c020050 3 x x x 0 0100
55 0 3c lw 8c020050 4 x x x 0 0880
56 0 3c lw 8c020050 0 3c 04 40 0 5010
57 0
58 0
59 0
60 0
61 0
62 0

Table 1. Expected Instruction Trace

