
Page 1 of 6

Introduction
In this lab and the next, you will design and build your own multicycle MIPS processor.
You will be much more on your own to complete these labs than you have been in the
past, but you may reuse any of your hardware (SystemVerilog modules) from previous
labs.

Your multicycle processor should match the design from the text, which is reprinted in
Figure 1 for your convenience. It should handle the following instructions: add, sub,
and, or, slt, lw, sw, beq, addi, and j. The multicycle processor is divided into
three units: the controller, datapath, and mem (memory) units. Note that the mem
unit contains the shared memory used to hold both data and instructions. Also note that
the controller unit comprises both the Main Decoder that takes OP5:0 as inputs
and the ALU Decoder that takes as inputs ALUOp1:0 and the Funct5:0 code from the 6
least significant bits of the instruction. The controller unit also includes the gates
needed to produce the write enable signal, PCEn, for the PC register.

In this lab you will design and test the controller.

Digital Design and Computer Architecture
J. Spjut

Lab 10: Multicycle Processor (Part 1)
�

Page 2 of 6

datapath

mem

control

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

AL
U

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (jump)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc1:0

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

Figure 1. Multicycle Processor

Page 3 of 6

Unit Overview
The three units have the following inputs and outputs. Although the signal names are in
upper case here to match the diagram, remember to use lower case for all names in your
SystemVerilog files.

CLK Input
Reset Input

Op [5:0] Input
Funct [5:0] Input

Zero Input
IorD Output

MemWrite Output
IRWrite Output

RegDst Output
MemtoReg Output

RegWrite Output
ALUSrcA Output

ALUSrcB [1:0] Output
ALUControl [2:0] Output

PCSrc [1:0] Output
PCEn Output

Table 1. Controller

Note that PCWrite and Branch are
internal signals (wires) within the
controller.

CLK Input
Reset Input

PCEn Input
IorD Input

IRWrite Input
RegDst Input

MemtoReg Input
RegWrite Input

ALUSrcA Input
ALUSrcB [1:0] Input

ALUControl [2:0] Input
PCSrc [1:0] Input

ReadData [31:0] Input
Op [5:0] Output

Funct [5:0] Output
Zero Output

Adr [5:0] Output
WriteData [31:0] Output

Table 2. Datapath

CLK Input
Reset Input

MemWrite Input
Adr [5:0] Input

WriteData [31:0] Input
ReadData [31:0] Output

Table 3. Memory (mem)

Page 4 of 6

Generating Control Signals

Before you begin developing the hardware for your MIPS multicycle processor, you’ll
need to determine the correct control signals for each state in the multicycle processor’s
state transition diagram. This state transition diagram is shown in Figure 7.42 in the book.
Complete the output table of the Main Decoder in Table 4 at the end of this handout.
Give the FSM control word in hexadecimal for each state. The first two rows are filled in
as examples. Be careful with this step. It takes much longer to debug an erroneous circuit
than to design it correctly the first time.

Overall Design

Now you will begin the hardware implementation of your multicycle processor. First,
copy mipsmulti.sv from the E85 Lab 10 directory on Charlie to your own directory
and rename it mipsmulti_xx.sv.

The mips module instantiates both the datapath and control unit (called the
controller module). The controller module in turn instantiates the main decoder
module (maindec) and the ALU decoder module (aludec). You will design the
controller in this lab. In the next lab, you will design the datapath. The memory is
essentially identical to the data memory from Lab 9 and will be provided for you.

Control Unit Design
The control unit is the most complex part of the multicycle processor. It consists of two
modules, the Main Decoder and the ALU Decoder. The Main Decoder, maindec,
should take the Opcode input and produce the outputs described in Table 4. On reset, the
control unit should start at State 0. The control unit should support the instructions from
Figure 7.42 in the text. The state transition diagram is also given at the end of this
handout.

Design your controller using an FSM for the Main Decoder and combinational logic for
the ALU Decoder. Also include any additional logic needed to compute PCEn from the
internal signals PCWrite, Branch, and Zero. The controller, maindec, and
aludec headers are given showing the inputs and outputs for each module. A portion of
the SystemVerilog code for the control unit has been given to you. Complete the
SystemVerilog code to completely design the hardware of the controller and its
submodules.

Create a controllertest_xx testbench for the controller module. Test each of
the instructions that the processor should support (add, sub, and, or, slt, lw, sw,
beq, addi, and j). Be sure to test both taken and nontaken branches. Remember that
the controller inputs are: clk, Reset, OP, Funct, and Zero. Your test bench
should apply the inputs. Visually inspect the states and outputs to verify that they match
your expectations from Table 4. Also verify that PCEn performs correctly. If you find
any errors, debug your circuit and correct the errors. Save a copy of your waveforms
showing the inputs, state, and control outputs, and PCEn at each state.

Page 5 of 6

What to Turn In
Submit the following elements in the following order. Clearly label each part by
number. Poorly organized submissions will lose points.
1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for next semester’s labs.
2. A completed Main Decoder output table (Table 4).

3. The SystemVerilog for your controller, maindec, and aludec modules.

4. Your controllertest_xx testbench.

5. Simulation waveforms of the controller module showing (in the given order): CLK,
Reset, OP, Funct, Zero, the state (this is an internal registered signal), ALUControl,
PCEn, and the entire control word (i.e. the 4-nibble word you entered in Table 4)
demonstrating each instruction (including taken and non-taken branches). Display all
signals in hexadecimal. Does it match your expectations?

Page 6 of 6

State
(Name)

PCWrite

MemWrite

IRWrite

RegWrite

ALUSrcA

Branch

IorD

MemtoReg

RegDst

ALUSrcB[1:0]

PCRsc[1:0]

ALUOp[1:0]

FSM Control
Word

0 (Fetch) 1 0 1 0 0 0 0 0 0 01 00 00 0x5010
1 (Decode) 0 0 0 0 0 0 0 0 0 11 00 00 0x0030
2 (MemAdr)
3 (MemRd)
4 (MemWB)
5 (MemWr)
6 (RtypeEx)
7 (RtypeWB)
8 (BeqEx)
9 (AddiEx)
10 (AddiWB)
11 (JEx)

Table 4. Main Decoder Control output

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

