C for GPIO

Outline

C-Programming Examples

d GPIO
d Timer
1 SPI

J UART

GPIO

d Write a C program to read the four switches and turn
on the corresponding bottom four LEDs using the

Switches

hardware in Figure. 33V

RD11 45 ﬁoa
RD10 44 ﬁoa
RD9 43 ﬁOa
RD8 42 ‘[;;:

RD7 55 fran—h

RD6 54 AN~

¢elld

RD5 53 FAA—bH
RD4 52 A A4

RD3 51 fAA—4

oo0ee=4

RD2 50 AA—bH

RD1 49 FAA—bH

RDO 46 [AA—4

Read SW Write LED

are outputs and RD[11:8] are

/*Configure TRISD so that pins RD[7:0]

inputs.
Read the switches by examining pins RD[11:8]

Write this value back to RD[3:0] to turn on the appropriate LEDs.

c code */

#include <p32xxxx.h>

void main (void) {
int switches;

TRISD = OxFFO0O0; // set RD[7:0] to output, RD[11:8] to

input
while (1) {
switches = (PORTD >> 8) & OxF; // Read and mask RD[7:4]

PORTD = switches; // display on the LEDs

Count to 1 sec

O Run periphery clock at 72 speed for 10MHz
d Set Pclk=clk/4

Prescale=256 = each count=256*0.1us=25.6us
d Count=1sec/25.6us=39062

Count to 1 sec

// Include
#include <P32xxxx.h>
#include <plib.h>

// Prototypes

volid main (void) ;
vold initTimers (void) ;
void main (void) {
unsigned short duration;
duration = 39062; //1lsec/25.6us=39062

TRISF = 0; // Use PORTF for output

initTimers () ; // Set up Timerl

TMR1 = 0; // Reset timers

PORTFbits.RFO = 0; // Output low

while (TMR1 < duration) {} // wait until duration of 1lsec is up
PORTFbits.RF0 = 1; // Output high

Count to 1 sec

void 1nitTimers (void) {

//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
T1CON

Assumes peripheral clock at 10MHz

Use Timerl for note duration

T1CON

bit 15: ON=1: enable timer

bit 14: FRZ=0: keep running in exception mode
bit 13: SIDL = 0: keep running in idle mode

bit 12: TWDIS=1l: ignore writes until current write completes

bit 11: TWIP=0: don't care in synchronous mode
bit 10-8: unused

bit 7: TGATE=0: disable gated accumulation
bit 6: unused
bit 5-4: TCKPS=11l: 1:256 prescaler, 0.lus*256=25.6us
bit 3: unused
bit 2: don't care in internal clock mode
bit 1: TCS=0: use internal peripheral clock
bit O: unused
= 0b1001000000110000;

d

Lab5 Audlo

HE

A music score is represented as a sequence of numbers
specifying the period and duration of each note. Both are 16-
bit values.

The period is given in units of t; = 1.6 ms. The duration is
given in units of t; = 51.2 ms.

Set the peripheral clock to Fosc/8 = 5 MHz. You can configure
Timer 1 to use a prescalar of 256 so that each count is 51.2
ms. Timiner 1 used for duration.

Similarly, configure Timer 2 to use a prescalar of 4 so that each
count is 0.8 ms, or half a period unit (convenient to set the
number of units of time for a high output and for a low output).
Timer 2 used for period.

Both timers should use the 5 MHz peripheral clock as their
source.

d C code: 8

lab05c_la.c

SPI

1 Design a system to commumcate between a PIC
master and an FPGA slave over SPI.

1 Write the C code for the PIC to send the character
‘A’ and receive a character back.

d Write HDL code for an SPI slave on the FPGA.
d Sketch a schematic of the interface.

Master Slave
SCK2 4 1 sck q[6:0] \l/ sdo
SDO2 6 2 sdo ql7:0]
VDD L VDD
GND GND
<
Microchip Altera
PIC32MX675F512H Cyclone IllIl FPGA
EP3C5E144C8

SDO X bit7 >< bit 6 >< bit 5 >< bit 4 >< bit 3 >< bit 2 >< bit 1 >< bit O

s e D Gl () gl (e G A D) 10

SPI Master

#include <p32xxxx.h>
void initspi(void) {
char junk;

SPI2CONDits.ON = 0; // disable SPI to reset any previous state

junk = SPI2BUF; /I read SPI buffer to clear the receive buffer
SPI2BRG = 7; //set BAUD rate to 1.25MHz, with Pclk at 20MHz
SPI2CONDbits.MSTEN = 1; // enable master mode
SPI2CONDbits.CKE = 1; // set clock-to-data timing (data centered on rising SCK edge)
SPI2CONDbits.ON = 1; // turn SPI on

}

char spi_send_receive(char send) {
SPI2BUF = send; /I send data to slave

while (!SPI2STATbits.SPIBUSY); // wait until received buffer fills, indicating data received
return SPI2BUF; /I return received data and clear the read buffer full

}

void main(void) {
char received;

initspi(); // initialize the SPI port
received = spi_send_receive(‘A’); // send letter A and receive byte back from slave

) 11

SPI Slave

S
The FPGA uses a shlft register to hold the bits that

have been received from the master and the bits
that remain to be sent to the master.

On the first rising sck edge after reset and each 8
cycles thereafter, a new byte from d is loaded into
the shift register.

On each subsequent cycle, a bit is shifted in from
sdo and a bit is shifted out to sdi.

sdi is delayed until the falling edge of sck so that it
can be sampled by the master on the next rising
edge. After 8 cycles, the byte received can be found
In q.

12

SPI Slave

module spi_slave(input logic

output logic [7:0] q);

logic [2:0] cnt;
logic qgdelayed;

sck, // from master
input logic sdo, // from master
output logic sdi, //to master

input logic reset, // system reset

input logic [7:0]d, // datato send

/I data received

/I 3-bit counter tracks when full byte is transmitted and new d should be sent
always_ff @(negedge sck, posedge reset)

if (reset) cnt = 0;
else cnt =cnt + 3'b1;

/I loadable shift register
/I loads d at the start, shifts sdo
always_ff @(posedge sck)

into bottom position on subsequent step

g <= (cnt==0) ?d: {q[6:0], sdo};

/I align sdi to falling edge of sck

//'load d at the start

always_ff @(negedge sck)
qdelayed = q[7];

assign sdi = (cnt == 0) ? d[7] : gqdelayed;

endmodule

13

Master Slave
SCK2 4 1 sck q[6:0] sdo
SDO2 6 2 sdo q(7:0]
SDI2 5 ia 3 sdi slave only need to
VDD T VDD received data from the
GND GND master
v
Microchip Altera
PIC32MX675F512H Cyclone Il FPGA
EP3C5E144C8

SDO X bit7 >< bit 6 >< bit 5 >< bit 4 >< bit 3 >< bit 2 >< bit 1 >< bit O

s e D Gl () gl (e G A D)

14

SPI Slave

/' If the slave only need to received data from the master

/I Slave reduces to a simple shift register given by following HDL.:

module spi_slave_receive_only(input logic sck, //from master
input logic sdi, //from master
output logic[7:0] q); data received

always_ff @(posedge sck)
q <={q[6:0], sdi}; //shift register

endmodule

15

UART

CTS 1 PIC

VCC 2 1

GND 3

BlueSMiRF BRv;

TX 4 26 (RC7/RX)
RX 5 27 (RC6/TX)

RTS 6

Configure UART

Using UART3 since nothing else uses PORTF

16

/*The main function demonstrates printing to the console and reading from the console using the putstrserial()
and getstrserial() functions. It also demonstrates using printf(), from stdio.h, which automatically prints through
UART3.*/

#include <P32xxxx.h>
#include <stdio.h>

void initUART (void)
{
/I Configure UART
/I Using UART3 since nothing else uses PORTF

TRISFbits. TRISF5 = 0; // RF5 is UART3 TX (output)
TRISFbits. TRISF4 = 1; // RF4 is UART3 RX (input)

/[l Want rate of 115.2 Kbaud

/I Assuming PIC peripheral clock Fpb = Fosc /2 = 20 MHz
/I based on default instructions in lab 1.

/I U3BRG = (Fpb / 4*baud rate) - 1

/I -> U3BRG = 10 (decimal)

/I Actual baud rate 113636.4 (-1.2% error)

U3ABRG = 10;

17

/I UART3 Mode Register
// bit 31-16: unused

/I bit 15: ON = 1: enable UART

/I bit 14: FRZ = 0: don't care when CPU in normal state
/I bit 13: SIDL = 0: don't care when CPU in normal state
/ bit 12: IREN = 0: disable IrDA

/I bit 11: RTSMD = 0: don't care if not using flow control

// bit 10: unused
// bit 9-8: UEN = 00: enable U1TX and U1RX, disable U1CTSb and U1RTSb

I/ bit 7: WAKE = 0: do not wake on UART if in sleep mode
/I bit 6: LPBACK = 0: disable loopback mode

/I bit 5: ABAUD = 0: don't auto detect baud rate

/1 bit 4: RXINV = 0: U1RX idle state is high

/I bit 3: BRGH = 0: standard speed mode

/I bit 2-1: PDSEL = 00: 8-bit data, no parity

/1 bit O: STSEL = 0: 1 stop bit

U3AMODE = 0x8000;

18

/I UART3 Status and control register
// bit 31-25: unused
/I bit 24-16: write 0 when not using auto address detect
/ bit 15-14: UTXISEL = 00: interrupt when TX buffer not full

/1 bit 13:
/1 bit 12:
/1 bit 11:
/1 bit 10:
/1 bit 9:
/1 bit 8:
/1 bit 7-6:
/1 bit 5:
/1 bit 4:
/1 bit 3:
/1 bit 2:
/1 bit 1:
/1 bit O:

UTXINV = 0: U1TX idle state is high
URXEN = 1: enable receiver

UTXBRK = 0: disable break transmission
UTXEN = 1: enable transmitter

UTXBF: don't care (read-only)

TRMT: don't care (read-only)

URXISEL = 00: interrupt when receive buffer not empty
ADDEN = 0: disable address detect

RIDLE: don't care (read-only)

PERR: don't care (read-only)

FERR: don't care (read-only)

OERR = 0: reset receive buffer overflow flag
URXDA: don't care (read-only)

U3ASTA = 0x1400;

19

UART (RX)

RX Port

char getcharserial(void) {
while ({U3ASTADbits.URXDA); // wait until data available
return USARXREG; /l return character received from serial port

}

void getstrserial(char *str) {

inti=0;

do{ // read an entire string until detecting
str[i] = getcharserial(); // carriage return

} while (str[i++] !'="\r'); // look for carraige return

str[i-1] = 0; // null-terminate the string

}

20

UART (TX)

void putcharserial(char c) {
while (U3ASTADbits.UTXBF); /[wait until transmit buffer empty
U3ATXREG =c; /I transmit character over serial port

}

void putstrserial(char *str) {
inti=0;

putcharserial("\n');
putcharserial(\r');

while (strfi] != 0) { /] iterate over string
putcharserial(str[i++]); // send each character

}

}

void main(void) {

char str[80];

inituart();

while(1) {

putstrserial("Please type something: ");
getstrserial(str);
printf("\n\rYou typed: %s\n\r", str);

}

) 21

