
PIC32&I/O&

E155&

2

Outline

GPIO
 SPI
 UART

Ref. PIC Family Reference Manual: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

 PIC32 organizes groups of GPIOs into ports that are
read and written together.

 Our PIC32 calls these ports RA, RB, RC, RD, RE,
RF, and RG.

 A port may have up to 16 GPIO pins, although the
PIC32 doesn’t have enough pins to provide that
many signals for so many ports.

 The number of GPIO pins available depends on the
size of the package.

GPIO

3

 Table 8.1 summarizes which pins are available in
various packages. For example, a 100-pin TQFP
provides pins RA[15:14], RA[10:9], and RA[7:0] of
port A. Note that RG[3:2] are input only. Also,
RB[15:0] are shared as analog input pins, and most
of the other pins have multiple functions as well.

GPIO Pins

4

Port 64-pin QFN/TQFP 100-pin TQFP, 121-pin XBGA

RA None 15:14, 10:9, 7:0

RB 15:0 15:0

RC 15:12 15:12, 4:0

RD 11:0 15:0

RE 7:0 9:0

RF 5:3, 1:0 13:12, 8, 5:0

RG 9:6, 3:2 15:12, 9:6, 3:0

Table: PIC32MX5xx/6xx/7xx GPIO pins

 The logic levels are LVCMOS-compatible. Input pins
expect logic levels of VIL = 0.15VDD and VIH = 0.8VDD,
or 0.5 and 2.6 V assuming VDD of 3.3V.

 Output pins produce VOL of 0.4 and VOH of 2.4 V as
long as the output current does not exceed 7 mA.

GPIO Pins

5

 TRIS
– Data Direction or Tri-State Control register that

determines whether a digital pin is an input or an
output.
• TRISx register bit = 1, configures the

corresponding I/O pin as an input
 where x is a letter (A-G) indicating the port of
 interest.
• TRISx register bit = 0, configures the

corresponding I/O pin as an output.

Special Function Registers

6

 PORT is a register used to read the current state of
the signal applied to the port I/O pins.

 Writing to a PORTx register performs a write to the
port’s latch, LATx register, latching the data to the
port’s I/O pins.

 LAT is a register used to write data to the port I/O
pins. The LATx Latch register holds the data written
to either the LATx or PORTx registers. Reading the
LATx Latch register reads the last value written to
the corresponding PORT or Latch register.

Special Function Registers

7

GPIO

8 Microchip Technology: http://ww1.microchip.com/downloads/en/DeviceDoc/61156G.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/61156G.pdf

GPIO Example

9

RD0 46

RD1 49

RD2 50

RD3 51

RD4 52

RD5 53

RD6 54

RD7 55

RD8 42

RD9 43

RD10 44

RD11 45

P
IC

32

LEDs

3.3 V

R
 = 1K

R
 = 330

Switches • The LEDs are wired to glow
when driven with a 1 and
turn off when driven with a
0.

• The switches are wired to
produce a 1 when closed and
a 0 when open.

• The microcontroller can use
the port to drive the LEDs
and read the state of the
switches.

#Configure TRISD so that pins RD[7:0] are outputs and RD[11:8] are
inputs.
#Read the switches by examining pins RD[11:8]
#Write this value back to RD[3:0] to turn on the appropriate LEDs.
#Assembly code:
 la $t0, TRSD # load address of TRSD ->$t0
 addi $t1, $0, OxFF00
 sw $t1, 0($t0) # TRISD=F00, configure RD[7:0] as outputs and
RD[11:8] as inputs
 la $t0, PORTD # load address of PORTD
 lw $t1, 0($t0) # t1=PORTD, read SW1-SW4 (RD[11:8])
 srl $t1, $t1, 8 # >>8
 andi $t1, $t1, 0x000F #mask off RD[7:4]
 sw $t1, 0($t0) # write to LED[7:0]

Read SW Write LED

10

 Data inputs and outputs are in general broken into
pieces that are input or output one at a time.

 Serial I/O is 1 bit at a time and parallel I/O is several
bits (e.g. 16 bits).

 Serial I/O is popular because it uses few wires and
is fast enough for many applications.

 Multiple standards for serial I/O have been
established and the PIC32 has dedicated hardware
to easily send data via these standards.
– SPI: Serial Peripheral Interface
– UART: Universal Asynchronous Receiver/Transmitter
– I2C: Inter-Intergrated Circuit
– USB: Universal Serial Bus
– Ethernet

Serial I/O

11

 SPI is a simple synchronous serial protocol that is
easy to use and relatively fast.

 The physical interface consists of three pins:
– Serial Clock (SCK)
– Serial Data Out (SDO)
– Serial Data In (SDI).

 SPI connects a master device to a slave device.
The master produces the clock. It initiates
communication by sending a series of clock pulses
on SCK. If it wants to send data to the slave, it puts
the data on SDO, starting with the most significant
bit.

SPI

12

 SPI connects a master device to a slave device, as shown.
 The master produces the clock. It initiates communication by

sending a series of clock pulses on SCK. If it wants to send
data to the slave, it puts the data on SDO, starting with the
most significant bit.

SPI

13

SCK

SDO

SDI

Master

SCK

SDO

SDI

Slave

(a)

SCK

(b)

SDO

SDI

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 Each SPI port is associated with four 32-bit
registers: SPIxCON, SPIxSTAT, SPIxBRG and
SPIxBUF.

 SPI1CON is the control register for SPI port 1. It is
used to turn the SPI ON and set attributes such as
the number of bits to transfer and the polarity of the
clock.

 Slide 15 lists the names and functions of all the bits
of the CON registers.

 STAT is the status register indicting, for example,
whether the receive register is full.

 The detailed of registers are described in the PIC
data sheet.

SPI

14

SPI CON register fields

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

SP1CON Register

15

Bits Name Function
31 FRMEN 1: Enable framing
30 FRMSYNC Frame sync pulse direction control
29 FRMPOL Frame sync polarity (1 = active high)
28 MSSEN 1: Enable slave select generation in master mode
27 FRMSYPW Frame sync pulse width bit (1 = 1 word wide, 0 = 1 clock wide)
26:24 FRMCNT[2:0] Frame sync pulse counter (frequency of sync pulses)

23 MCLKSEL Master clock select (1 = master clock, 0 = peripheral clock)
22:18 unused

17 SPIFE Frame sync pulse edge select
16 ENHBUF 1: Enable enhanced buffering
15 ON 1: SPI ON
14 unused
13 SIDL 1: Stop SPI when CPU is in idle mode
12 DISSDO 1: disable SDO pin
11 MODE32 1: 32-bit transfers
10 MODE16 1: 16-bit transfers
9 SMP Sample phase (see Figure 8.10)
8 CKE Clock edge (see Figure 8.10)
7 SSEN 1: Enable slave select
6 CKP Clock polarity (see Figure 8.10)
5 MSTEN 1: Enable master mode
4 DISSDI 1: disable SDI pin
3:2 STXISEL[1:0] Transmit buffer interrupt mode

1:0 SRXISEL[1:0] Receive buffer interrupt mode
Microchip Technology: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

 BRG is the baud rate register that sets the speed of
SCK relative to the peripheral clock according to the
formula:

 BUF is the data buffer. Data written to BUF is

transferred over the SPI port on SDO pin, and the
received data on SPI pin can be found by reading
BUF after the transfer is complete.

SPI Data Rate

16

 2 BRG+1
peripheral clock

SPI

f
f

1. To prepare the SPI in master mode, first turn it OFF by clearing
bit 15 of the CON register (the ON bit) to 0.

2. Clear anything that might be in the receive buffer by
reading the BUF register.

3. Set the desired BAUD rate by writing the BRG register. For
example, if the peripheral clock is 20 MHz and the desired
BAUD rate is 1.25 MHz, set BRG to 20/(2×1.25) – 1 = 7.

4. Put the SPI in master mode by setting bit 5 of the CON register
(MSTEN) to 1.

5. Set the bit 8 of the CON register (CKE) so that SDO is centered
on the rising edge of the clock.

6. Finally, turn the SPI back ON by setting the ON bit of the CON
register.

SPI Operation

17

 To send data to slave:
– Write the data to BUF register

 Data will be transmitted serially
 Slave simultaneously send data back to the master
 Wait until bit 11 of the STAT register (the SPIBUSY

bit) becomes 0 indicating that the data received from
slave can be read from BUF

SPI Operation

18

 A UART is a serial I/O peripheral that communicates
between two systems without sending a clock.

 Instead, the systems must agree in advance about
what data rate to use and must each locally
generate its own clock.

 Although these system clocks may have a small
frequency error and an unknown phase relationship,
the UART manages reliable asynchronous
communication.

UART

19

 UARTs are used in protocols such as RS-232 and
RS-485. For example, computer serial ports use the
RS-232C standard, introduced in 1969 by the
Electronic Industries Association.

 The standard originally envisioned connecting Data
Terminal Equipment (DTE) such as a mainframe
computer to Data Communication Equipment (DCE)
such as a modem.

 Although UARTs relatively slow compared to SPI,
the standards have been around for so long that
they remain important today.

UART

20

UART Operation

21

TX

RX

DTE

TX

RX

DCE

(a)

(b) Idle Start Stopbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

1/9600 sec

• Line idles at a logic ‘1’ when not in use
• Each character is sent as a start bit (0), 7-8 data bits, and optional parity bit, and one or more stop bit (1)
• UART detects the falling transition from idle to start to lock on to the transmission to synchronize data

transmission

 The parity bit allows the system to detect if a bit was
corrupted during transmission. It can be configured
as even or odd.

 A common choice is 8 data bits, no parity, and 1
stop bit, making a total of 10 bits to convey an 8-bit
character of information.

 Data rates are referred to in units of baud rather
than bits/sec.
– 9600 baud indicates 9600 bit times / sec
– or 960 characters / sec
– giving a data rate of 960 × 8 = 7680 data bits / sec.

UART Operation

22

 Typical baud rates include 300, 1200, 2400, 9600,
14400, 19200, 38400, 57600, and 115200.

 The lower rates were used in the 1970’s and 1980’s
for modems that sent data over the phone lines as a
series of tones.

 In contemporary systems, 9600 and 115200 are two
of the most common baud rates; 9600 is
encountered where speed doesn’t matter, and
115200 is the fastest standard rate, though still slow
compared to other modern serial I/O standards.

UART Operation

23

 The PIC32 has six UARTs named U1-U6.
 Each UART is associated with five 32-bit registers:

– UxMODE: configure
 Default to 8 data bits, 1 stop, no RTS/CTS flow control
 bit15 is ON control to enable UART

– UxSTA: status
 Set the UTXEN and URXEN bits (bits 10 and 12) to enable
 TX and RX pins
 UTXBF (bit 9) indicates that the transmit buffer is full
 URXDA (bit 0) indicates that the receive buffer has data available

– UxBRG: set Baud rate
– UxTXREG: data transmission start when written
– UxRXREG: data receiving start when read

UART

24

– UxBRG: set Baud rate
set the baud rate to a fraction of the peripheral bus clock

UART

25

 16 BRG+1
peripheral clock

UART

f
f

Target Baud Rate BRG Actual Baud Rate Error
300 4166 300 0.0%
1200 1041 1200 0.0%
2400 520 2399 0.0%
9600 129 9615 0.2%
19200 64 19231 0.2%
38400 32 37879 -1.4%
57600 21 56818 -1.4%
115200 10 113636 -1.4%

BRG Settings for a 20 MHz peripheral clock

– UxTXREG: data transmission start when written
To transmit data, wait until STA.UTXBF is clear indicating
that the transmit buffer has space available, and then write
the byte to TXREG

– UxRXREG: data receiving start when read

To receive data, check STA.URXDA to see if data has
arrived, and then read the byte from the RXREG.

UART

26

