PIC321/0

E155

Outline

d GPIO
d SPI
d UART

Ref. PIC Family Reference Manual:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

GPIO

read and written together.

d Our PIC32 calls these ports RA, RB, RC, RD, RE,
RF, and RG.

d A port may have up to 16 GPIO pins, although the
PIC32 doesn’t have enough pins to provide that
many signals for so many ports.

d The number of GPIO pins available depends on the
size of the package.

GPIO Pins

O Table 8.1 summarizes which pins are available in

various packages. For example, a 100-pin TQFP
provides pins RA[15:14], RA[10:9], and RA[7:0] of
port A. Note that RG[3:2] are input only. Also,
RB[15:0] are shared as analog input pins, and most
of the other pins have multiple functions as well.

Table: PIC32MX5xx/6xx/7xx GPIO pins

64-pin QFN/TQFP 100-pin TQFP, 121-pin XBGA

N

_ None 15:14, 10:9, 7:0
15:12 15:12, 4:0
_ 5:3,1:0 13:12, 8, 5:0
_ 9:6, 3:2 15:12, 9:6, 3:0

GPIO Pins

expect logic levels of V| = 0.15Vy and V,, = 0.8V,
or 0.5 and 2.6 V assuming V of 3.3V.

d Output pins produce V, of 0.4 and V,, of 2.4 V as
long as the output current does not exceed 7 mA.

Special Function Registers

HE

4 TRIS

— Data Direction or Tri-State Control register that
determines whether a digital pin is an input or an
output.

« TRISX register bit = 1, configures the
corresponding /O pin as an input

where x is a letter (A-G) indicating the port of
Interest.

« TRISX register bit = 0, configures the
corresponding I/O pin as an output.

Speclal Functlon Reglsters

= : i S
d PORT IS a register used to read the current state of
the signal applied to the port I/O pins.

O Writing to a PORTX register performs a write to the
port’s latch, LATx register, latching the data to the
port’s I/O pins.

O LAT is a register used to write data to the port I/O
pins. The LATx Latch register holds the data written
to either the LATx or PORTX registers. Reading the
LATX Latch register reads the last value written to
the corresponding PORT or Latch register.

FIGURE 12-1:

BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

Nots:

Paripheral Moduls
(R Ao i 1

This biock diagram Is 3 generd representation of 3 shared porvpenpheral structure for flustration purposes only. The actual struciure

Perphera Moduie Enable
| Perpheral Cutput Enadle |
| Pefpnerl Quput Data
POMdE® T T T

;_ RD ODC
|
| DamBus D
| SYSCLK. CK
l WR ODC.

RDTRIS
|
|
l >
|
|
I WRTRIS
| D
I
| WRLAT —]
| WRPORT—1__./ -
| ROLAT
|
| RD PORT
|
|
| SYSCLK:
| Peripheral input
. Perpherd Input Bu

Legend: R = Peripheral input buffer types may vary. Refer to Tadle 1-1 for peripheral detalls.

for any specific portiperipheral comoination may be diferant than It is shown here.

Microchip Technology:

http://ww1.microchip.com/downloads/en/DeviceDoc/61156G.pdf

GPIO Example

Switches * The LEDs are wired to glow
RDT145 oo] when driven with a 1 and
Lol) .
Ro1044 f-p o [turn off when driven with a
RDO 43 —D/Lo; 3 0. | |
RDB4Z o7 | * The switches are wired to

RD7 55 frn—h VY

produce a 1 when closed and

RD6 54 RAA—H
a 0 when open.

¢€lld

RD5 53 pAA—H

N The microcontroller can use
RD3 51 | oo the port to drive the LEDs
D250 | o and read the state of the

RD1 49 [n—oA switches.

RDO 46 [AA—DH

Read SW Write LED

#Configure TRISD so that pins RD[7:0] are outputs and RD[11:8] are
inputs.

#Read the switches by examining pins RD[11:8]
#Write this value back to RD[3:0] to turn on the appropriate LEDs.
#Assembly code:

la St0, TRSD # load address of TRSD ->S$t0

addi $tl, $0, OxFFOO

sSw Stl, 0(St0) # TRISD=F00, configure RD[7:0] as outputs and
RD[11:8] as inputs

la St0, PORTD # load address of PORTD

1w stl, 0(st0) # tl1=PORTD, read SW1-SW4 (RD[11:8])

srl Stl, Stl, 8 # >>8

andi Stl, Stl, OxO0O0O0OF #mask off RD[7:4]

sSw Stl, 0(St0) # write to LED[7:0]

10

Serial 1/0

HE

O Data inputs and outputs are in general broken Into
pieces that are input or output one at a time.

 Serial 1/O is 1 bit at a time and parallel 1/0 is several
bits (e.g. 16 bits).

d Serial I/O is popular because it uses few wires and
Is fast enough for many applications.

d Multiple standards for serial /O have been
established and the PIC32 has dedicated hardware
to easily send data via these standards.

SPI: Serial Peripheral Interface

UART: Universal Asynchronous Receiver/Transmitter

12C: Inter-Intergrated Circuit

USB: Universal Serial Bus

Ethernet 1

J

d

SPI

SPlis a S|mple synchronous serial protocol that is
easy to use and relatively fast.

The physical interface consists of three pins:
— Serial Clock (SCK)

— Serial Data Out (SDO)

— Serial Data In (SDI).

SPI connects a master device to a slave device.
The master produces the clock. It initiates
communication by sending a series of clock pulses
on SCK. If it wants to send data to the slave, it puts
the data on SDQO, starting with the most significant
bit.

12

SPI

1 The master produces the clock. It initiates communication by
sending a series of clock pulses on SCK. If it wants to send
data to the slave, it puts the data on SDO, starting with the
most significant bit.

Master Slave

Ly AW AW W AWAWERWEWE
SDO >< bit 7 >< bit 6 >< bit 5 >< bit 4 >< bit 3 >< bit 2 >< bit 1 >< bit 0
(b) SDI bit7>—<bit6 @ @ @ @ bit 1>—<bit0> 12

SPI

J

4

4

" SPI CON register fields

Each SPI port is assomated W|th four 32- b|t
registers: SPIXCON, SPIXSTAT, SPIXBRG and
SPIXBUF.

SPI1CON is the control register for SPI port 1. ltis
used to turn the SPI ON and set attributes such as
the number of bits to transfer and the polarity of the
clock.

Slide 15 lists the names and functions of all the bits
of the CON registers.

STAT is the status register indicting, for example,
whether the receive register is full.

The detailed of registers are described in the
14

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

SP1CON Register

EI FRMEN
[FRMSYNC
LR FRMPOL
VLR MSSEN
FRMSYPW

m FRMCNT[2:0]
VEI MCLKSEL

m unused
SPIFE
FE ENHBUF
EE ON
BEEE unused
HER sibL
P2 DISsSDO
FE MODE32
B[MODE16
EI svp
I CKE
SSEN
R ckp
5 MSTEN

DISSDI

4 |
m STXISEL[1:0]
“ SRXISEL[1:0]

Microchip Technology:

1: Enable framing

Frame sync pulse direction control

Frame sync polarity (1 = active high)

1: Enable slave select generation in master mode

Frame sync pulse width bit (1 = 1 word wide, 0 = 1 clock wide)
Frame sync pulse counter (frequency of sync pulses)

Master clock select (1 = master clock, 0 = peripheral clock)

Frame sync pulse edge select
1: Enable enhanced buffering
1: SPI ON

: Stop SPI when CPU is in idle mode
: disable SDO pin

: 32-bit transfers

: 16-bit transfers

Sample phase (see Figure 8.10)
Clock edge (see Figure 8.10)

1: Enable slave select

Clock polarity (see Figure 8.10)
1: Enable master mode

1: disable SDI pin

Transmit buffer interrupt mode

_— e A

Receive buffer interrupt mode

15

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en545644

SPI Data Rate

SCK relative to the peripheral clock according to the
formula:

. f peripheral—clock

Jors = 2x(BRG+1)

d BUF is the data buffer. Data written to BUF is
transferred over the SPI port on SDO pin, and the
received data on SPI pin can be found by reading
BUF after the transfer is complete.

16

SPI Operatlon

To prepare the SPI in master mode, flrst turn it OFF by clearing
bit 15 of the CON register (the ON bit) to O.

Clear anything that might be in the receive buffer by
reading the BUF register.

Set the desired BAUD rate by writing the BRG register. For
example, if the peripheral clock is 20 MHz and the desired
BAUD rate is 1.25 MHz, set BRG to 20/(2x1.25)-1=7.

Put the SPI in master mode by setting bit 5 of the CON register
(MSTEN) to 1.

Set the bit 8 of the CON register (CKE) so that SDO is centered
on the rising edge of the clock.

Finally, turn the SPI back ON by setting the ON bit of the CON
register.

17

SPI Operatlon

O To send data to slave:

— Write the data to BUF register

Data will be transmitted serially

Slave simultaneously send data back to the master

Wait until bit 11 of the STAT register (the SPIBUSY
bit) becomes 0 indicating that the data received from
slave can be read from BUF

U OO

18

UART

J

d

A UART IS a serial I/O perlpheral that Communlcates
between two systems without sending a clock.

Instead, the systems must agree in advance about
what data rate to use and must each locally
generate its own clock.

Although these system clocks may have a small
frequency error and an unknown phase relationship,
the UART manages reliable asynchronous
communication.

19

UART

4 UARTS are used In protocols such as RS 232 and
RS-485. For example, computer serial ports use the
RS-232C standard, introduced in 1969 by the
Electronic Industries Association.

1 The standard originally envisioned connecting Data
Terminal Equipment (DTE) such as a mainframe
computer to Data Communication Equipment (DCE)
such as a modem.

d Although UARTSs relatively slow compared to SPI,
the standards have been around for so long that
they remain important today.

20

UART Operation

(@)

DTE

X

RX

DCE
X

RX 1/9600 sec

>

(b) Idle \ Start /bitO ><bit1 ><bit2 ><bit3 ><bit4 ><bit5 ><bit6 ><bit7 /Stop

Line idles at a logic ‘1’ when not in use
Each character is sent as a start bit (0), 7-8 data bits, and optional parity bit, and one or more stop bit (1)
UART detects the falling transition from idle to start to lock on to the transmission to synchronize data
transmission

21

UART Operation

O The parity b|t aIIows the system to detect if a bit was
corrupted during transmission. It can be configured
as even or odd.

O A common choice is 8 data bits, no parity, and 1
stop bit, making a total of 10 bits to convey an 8-bit
character of information.

1 Data rates are referred to in units of baud rather

than bits/sec.
— 9600 baud indicates 9600 bit times / sec

— or 960 characters / sec
— giving a data rate of 960 x 8 = 7680 data bits / sec.

22

d

14400, 19200, 38400, 57600, and 115200.

The lower rates were used in the 1970’s and 1980’s
for modems that sent data over the phone lines as a
series of tones.

In contemporary systems, 9600 and 115200 are two
of the most common baud rates; 9600 is
encountered where speed doesn’t matter, and
115200 is the fastest standard rate, though still slow
compared to other modern serial 1/O standards.

23

UART

d Each UART is associated with five 32-bit registers:
— UxMODE: configure

Default to 8 data bits, 1 stop, no RTS/CTS flow control
bit15 is ON control to enable UART

— UxSTA: status

Set the UTXEN and URXEN bits (bits 10 and 12) to enable
TX and RX pins

UTXBF (bit 9) indicates that the transmit buffer is full
URXDA (bit 0) indicates that the receive buffer has data available

— UxBRG: set Baud rate

— UXTXREG: data transmission start when written
— UXRXREG: daf . tart wi | 24

UART

— UxBRG: set Baud rate

set the baud rate to a fraction of the peripheral bus clock
f peripheral—clock

Jomr =16 (BRGH)

BRG Settings for a 20 MHz peripheral clock

300

EC *166 0.0%
1041 1200 0.0%
520 2399 0.0%
129 9615 0.2%
64 19231 0.2%
32 37879 -1.4%
21 56818 -1.4%
10 113636 -1.4%

25

UART

— UxTXREG data transm|33|on start when written

To transmit data, wait until STA.UTXBEF is clear indicating
that the transmit buffer has space available, and then write
the byte to TXREG

— UxRXREG: data receiving start when read

To receive data, check STA.URXDA to see if data has
arrived, and then read the byte from the RXREG.

26

