Sequential Design

E155

Outline

- □ Sequential design
- Dynamic discipline
- Metastability
- □ Synchronizer

Sequencing

- Combinational logic
 - output depends on current inputs
- Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called state or tokens
 - Ex: FSM, pipeline

Sequencing Overhead

- ☐ Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- ☐ Makes circuit slower than just the logic delay
 - Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Sequencing Elements

- □ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- ☐ Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- ☐ Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

- Pass Transistor Latch
- Pros
 - +
 - +
- Cons
 - _
 - ___
 - _
 - ___
 - ___
 - _

Used in 1970's

☐ Transmission gate

+

-

- ☐ Inverting buffer
 - +
 - +
 - + Fixes either
 - •
 - •

- ☐ Tristate feedback
 - +
 - ___
- □ Static latches are now essential because of leakage

□ Buffered input

+

+

- Buffered output
 - +

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

- □ Datapath latch
 - +
 - +
 - _

Flip-Flop Design

☐ Flip-flop is built as pair of back-to-back latches

Enable

- \Box Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

Reset

- ☐ Force output low when reset asserted
- ☐ Synchronous vs. asynchronous

Set / Reset

- ☐ Set forces output high when enabled
- ☐ Flip-flop with asynchronous set and reset

Flip-Flop Design

☐ Flip-flop is built as pair of back-to-back latches

Max-Delay: Flip-Flops

Min-Delay: Flip-Flops

$$t_{cd} \ge t_{\text{hold}} - t_{ccq}$$

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay

Skew: Flip-Flops

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$$

Two-Phase Clocking

- ☐ If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- ☐ In this class, working chips are most important
 - No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- \Box Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- □ Safe designs use flip-flop with non-overlapping clocks
 - Slow non-overlap adds to setup time
 - But no hold time problems
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Max Delay: 2-Phase Latches

Min Delay 2-Phase Flip-Flop

$$t_{cd} > t_{hold} - t_{ccq} - t_{nonoverlap}$$

Violation of Dynamic Discipline

Asynchronous (for example, user) inputs might violate the dynamic discipline

Metastability

- Any bistable device has two stable states and a metastable state between them
- A flip-flop has two stable states (1 and 0) and one metastable state
- If a flip-flop lands in the metastable state, it could stay there for an undetermined amount of time

Synchronizer Internals

- ☐ A synchronizer can be built with two back-to-back flip-flops.
- □ Suppose the input D is transitioning when it is sampled by flip-flop 1, F1.
- The amount of time the internal signal D2 can resolve to a 1 or 0 is $(T_c t_{\text{setup}})$.

Synchronizer Probability of Failure

For each sample, the probability of failure of this synchronizer is:

P(failure) =
$$(T_0/T_c) e^{-(T_c - t_{\text{setup}})/\tau}$$

Synchronizer Mean Time Before Failure

- If the asynchronous input changes once per second, the probability of failure per second of the synchronizer is simply P(failure).
- In general, if the input changes N times per second, the probability of failure per second of the synchronizer is:

$$P(\text{failure})/\text{second} = (NT_0/T_c) e^{-(T_c - t_{\text{setup}})/\tau}$$

- \square Thus, the synchronizer fails, on average, 1/[P(failure)/second]
- ☐ This is called the *mean time between failures*, MTBF:

MTBF =
$$1/[P(\text{failure})/\text{second}] = (T_c/NT_0) e^{(T_c - t_{\text{setup}})/\tau}$$