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Abstract 

 
This paper describes a very high radix scalable 

Montgomery multiplier.  It extends the radix-2 
Tenca-Koç scalable architecture using w × v – bit 
integer multipliers in place of AND gates.  The new 
design can perform 1024-bit modular 
exponentiation in 6.6 ms using 2847 4-input lookup 
tables and 32 16 x 16 multipliers, making it the 
fastest scalable design yet reported.  
 
1. Introduction 
 

Many cryptographic algorithms require modular 
exponentiation of very long n-bit operands, which is 
performed with repeated modular multiplications.  
Typical values of n are 256-2048.  Montgomery’s 
modular multiplication algorithm [5] is widely used in 
these applications because it avoids costly division 
steps.   

Much research has been devoted to hardware 
implementations of Montgomery multipliers.  [9] 
describes a scalable radix-2 design that handles word 
lengths independent of the width of the processing 
elements and processes the multiplier one bit at a 
time.  [10] extends the scalable approach to radix-4, 
handling two bits at a time.  [1] proposes radix-4 and 
radix-16 designs using precomputed multiples of the 
operands, but the design is not scalable.  [6] presents a 
very high radix implementation, but focuses on 
optimizing the memory interface to a single 
bandwidth-constrained operand memory and uses a 
single processing element. 

This paper presents a very high radix scalable 
Montgomery multiplier.  It extends the scalable 
architecture of [9] to radix 2v by using a w × v-bit 
multiplier.  It also improves on [6] by allowing for a 
variable number of processing elements.  We begin by 
defining our notation and reviewing two algorithms for 
very high radix Montgomery multiplication.  Both 
algorithms can be unrolled onto the same hardware 

pipeline.  We present the design of the processing 
elements in the pipeline and analyze the system 
latency.  The very high radix designs have been mapped 
onto Xilinx FPGAs and the results are compared with 
competing implementations. 
 
2. Montgomery multiplication 
 

Montgomery multiplication is defined as 
 

Z = (XYR-1) mod M 
 

with the notation 
 

X: n-bit multiplier 
Y: n-bit multiplicand 
M: n-bit odd modulus, typically prime 
M’: n-bit integer satisfying RR-1 – MM’ = 1 
R: the radix, 2n 

R-1:   modular multiplicative inverse of R 
(RR-1) mod M = 1 

 
It is performed with the following steps [5]: 
 
Multiply: Z = X × Y 
Reduce: reduce = Z × M’ mod R 
  Z = [Z + reduce × M] / R 
Normalize: if Z = M then Z = Z - M 
 
reduce has the important property that Z + reduce 

× M has 0’s in the n least significant positions.  The 
mod R and divide by R steps are trivial because R is a 
power of 2, so Montgomery multiplication avoids 
difficult divisions.  The normalize step can be skipped 
in certain repeated Montgomery multiplies, and so we 
ignore it for the rest of this paper. 
 
2.1. Tenca-Koç scalable radix-2 multiplier 

 
The algorithm above can be implemented in a 

straightforward fashion if n-bit adders and n x n–bit 
multipliers are available.  This becomes impractical 
for large n (e.g. 1024).  Moreover, we would like a 



scalable design that can handle arbitrary values of n by 
reusing fixed-width hardware. 

Tenca and Koç [9] describe a scalable radix-2 
implementation with w-bit processing elements (PEs) 
using the algorithm in Fig. 1.  Each PE iterates over v 
= 1 bit of X at a time.  It requires e =  wn /  steps for 
the PE to handle all n bits of Y and M.  In radix 2v, only 
the v least significant bits of reduce are necessary 
because Z is only right-shifted by v bits [2].  M’ is 
always odd, so for radix 2, reduce simplifies to the 
least significant bit of Z, Z0.  
 

Z = 0 
for i = 0 to n-1 
    (CA, Zw-1:0) = Zw-1:0 + Xi × Yw-1:0 

    reduce = Z0 

    (CB, Zw-1:0) = Zw-1:0 + reduce × Mw-1:0 

    for j = 1 to e 
        (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + Xi × Y(j+1)w-1:jw + CA  
        (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB 

        Zjw-1:( j-1)w = (Zjw, Zjw-1:( j-1)w+1) 

 
Fig. 1. Tenca-Koç scalable radix-2 Montgomery 

multiplication algorithm 
 
2.2. Very high radix 
 

Scalable Montgomery algorithms can be 
generalized to higher radices.  [4] describes radix 2w 
designs using w-bit processing elements, suitable for 
software implementations with square multipliers.  
This paper extends the generalization to radix 2v 
designs using w-bit processing elements.  These 
designs require w × v – bit rectangular multipliers. 

The following notation will be used to describe the 
very high radix Montgomery multiplication 
algorithms.  Figures 2 and 3 extend two of the most 
efficient algorithms from [4].  In coarsely integrated 
operand scanning (CIOS), the multiplication and 
reduction steps are separated for each v-bit digit of X.  
In finely integrated operand scanning (FIOS), the 
steps are combined for each digit of X and word of Y. 
The algorithms use the following parameters. 

 

w: word length 
v: digit length 
e:  wn / , the number of words of Y, M to process 

f:  vn / , the number of digits of X to process 

CA: v-bit carry digit 
CB: v-bit carry digit 
 
 
 
 

Z = 0 
for i = 0 to f-1 
    CA = 0 
    for j = 0 to e+        -1 
        (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + X(i+1)v-1:iv × Y(j+1)w-1:jw + CA 

    CB = 0 
    reduce = (M'v-1:0 × Zw-1:0)v-1:0 

    for j = 0 to e+       -1 
        (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB 

        Zjw-1:( j-1)w = (Zjw+v-1:jw, Zjw-1:( j-1)w+v) 
 

Fig. 2. Scalable radix-2v coarsely integrated 
operand scanning algorithm 

 
Z = 0 
for i = 0 to f-1 
    (CA, Zw-1:0) = Zw-1:0 + X(i+1)v-1:iv × Yw-1:0 

    reduce = (M'v-1:0 × Zw-1:0)v-1:0 

    (CB, Zw-1:0) = Zw-1:0 + reduce × Mw-1:0 

    for j = 1 to e+        -1 
        (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + X(i+1)v-1:iv × Y(j+1)w-1:jw + CA  
        (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB 

        Zjw-1:( j-1)w = (Zjw+v-1:jw, Zjw-1:(j-1)w+v) 
 
Fig. 3. Scalable radix-2v finely integrated 

operand scanning algorithm 
 
Very high radix designs should use w = v because 

each w-bit word is right-shifted by v bits in the 
reduction step. 
 
3. Hardware implementation 
 

Fig. 4 shows the architecture of a scalable 
Montgomery multiplier with a kernel of p PEs.  Each 
PE receives v bits of X and w bits of M, Y, and Z on 
each step. In one kernel cycle, p v-bit digits of X are 
processed.  Hence, k = n/pv kernel cycles are 
necessary to process all the bits of X. 

 
Fig. 4. Scalable very high radix Montgomery 

multiplier architecture 
 
3.1. Processing elements 
 

Fig. 5 shows the implementation of a processing 
element.  The weights of the lines indicate the bus  
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Fig. 5. Processing element 
 

widths. The PE contains a pair of multiply-accumulate 
(MAC) circuits for the multiplication and reduction 
steps.  Feedback registers hold the running carries CA 
and CB.  At the beginning of the kernel cycle, the 
second multiplier is also used to compute reduce.  A 
control path at the top of the PE indicates when X 
should be latched and when reduce should be 
computed and latched. 

The PE is pipelined to offer single-cycle 
throughput but four-cycle latency.  This compares to 
two-cycle latency in [9].  The greater latency permits 
the cycle time to be limited to that of a single MAC. 
 
3.1. Latencies 
 

Fig. 6 shows the pipeline timing for a system with 
three processing elements.  The vertical axis 
represents time and the horizontal represents PEs 
(with two MAC columns per PE).  On cycle 1, the first 
MAC in PE 1 computes Zw-1:0 = Zw-1:0 + Xv-1:0 × Yw-1:0.  
On each of the e+1 subsequent cycles, it processes 
the same digit of X but the next word of Y and Z.  On 
cycle 2, the second MAC in PE 1 computes reduce = 
M’v-1:0 × Zw-1:0 and saves the v-bit result.  On cycle 3, it 
reduces Zw-1:0 = Zw-1:0 + reduce × Mw-1:0.  On cycle 4, 
it reduces the next word Z2w-1:w = Z2w-1:w + reduce × 
M2w-1:w and right shifts Z by v bits to produce a new 
least significant word of Z.  On cycle 5, PE 2 can 
begin using this least significant word of Z.  

Recall that an entire multiplication requires k = 
n/pv kernel cycles.  The kernel cycle time is the 
number of clock cycles until PE 1 can begin 
processing the next digit of X.  PE 1 cannot begin the 
next kernel cycle until it has processed all the words 
of Z and until PE p has produced the first word of Z.  

 

Fig. 6. Hardware pipeline diagram p=3, e=4 
 

The output of PE p is bypassed back to PE 1 through a 
FIFO, adding one cycle of latency. 

 This leads to two cases to determine the 
multiplication latency. Case I corresponds to a large 
number of words, e, relative to the number of 
processing elements, p.  Here there is no stall 
between kernel cycles, and so the PE hardware is used 
with maximal efficiency.  Case II corresponds to a 
large number of processing elements relative to the 
number of words.  As shown in Fig. 6, the first PE 
must be stalled until the last PE finishes calculating 
the first word of Z.  

In general, to handle all the words of Y, a particular 
PE must perform (e+2) cycles in one kernel cycle (or 
in one iteration of the outer loop).  There is a 4 clock 
cycle latency between PEs.  Thus, with p PEs, there is 
a 4p delay before the first PE may begin processing 
again.  Therefore Case I occurs when (e+2)>4p and 
Case II occurs when ( e+2)<=4 p. 
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Case I: The first PE is used continuously e+3 
times per kernel cycle for k kernel cycles (the kernel 
cycle time has been increased by one to avoid 
resource contention of the multiplier in MAC 2, 
which is used in the reduce calculation).  Then each 
remaining PE requires 4 more cycles to complete.  
Finally there are 2 extra cycles needed for the 
reduction MAC to finish and shift.  Therefore the total 
delay dI is  

 dI = k(e+3) + 4(p-1) + 2 
  

Case II: Each kernel cycle takes 4p cycles until the 
first word of Z is ready, plus 1 to bypass the result 
back to the 1st PE through the queue.  Thus k(4p+1) 
cycles are needed.  The last kernel cycle has an 
additional delay for the final PE to finish its 
processing.  Since this PE takes e+4 cycles (including 
2 cycles for the reduction MAC to finish and shift), 
but 5 of them have already been accounted for, there 
are e+4-5 = e-1 cycles remaining.  Therefore the total 
delay dII is  

 dII = k(4p+1) + (e - 1) 
 

Rewriting these delays in terms of the design 
parameters n, w, v, and p, we obtain 

24
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1
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These delays are similar those in [9], except the 2 
cycle latency between processing elements is now 4 
because multiplication and reduction take place in 
separate cycles.  When there are relatively few small 
PEs, the area-delay product is approximately n2, and 
so this design is efficient.  In Case II the latency 
approaches n(4/v + 1/w) with large amounts of 
hardware, and so the area-delay product is 
approximately np(4w+v). 
 
4. Results 
 

The very high radix Montgomery multiplier was 
coded in Verilog parameterized by p, w, and v, and 
verified against a C reference model.  It was 
synthesized using Synplicity Pro targeting a Xilinx 
Virtex-II speed grade 6 XC2V2000-6 FPGA [13].  The 
results were not verified on an actual chip.  Each PE 
requires 2 MACs.  Each MAC uses a dedicated 18×18 
block multiplier and two carry-propagate adders.  The 
intrinsic size of the multipliers makes w = v = 16 a 
sweet spot for this design. 

The complete radix 216 Montgomery multiplier 
(including sequencing hardware) contains 2847 LUTs, 
32 multipliers, and approximately 5n bits of RAM for 
the FIFO and operand storage.  It operates at a worst-
case 102 MHz, limited by the MAC.  

Table I. Comparison of modular exponentiation times 
 

Description Technology Hardware Clock Speed Scalable Reference 256-bit time (ms) 1024-bit time 
(ms) 

Scalable radix 216 
16 PEs x 16 bits 

Xilinx Virtex II 2847 LUTs 
+ 32 mults 
+ ~5n RAM 

102 MHz Yes This work 0.40 6.6 

Scalable radix 216 4 
PEs x 16 bits 

Xilinx Virtex II 780 LUTs 
+ 8 mults 
+ ~5n RAM 

102 MHz Yes This work 0.45 22 

Improved radix 2 
64 PEs x 16 bits 

Xilinx Virtex II 5598 LUTs 
+ ~5n RAM 

144 MHz Yes [3] 1.0 16 

Improved radix 2 
16 PEs x 16 bits 

Xilinx Virtex II 1514 LUTs 
+ ~5n RAM 

144 MHz Yes [3] 1.1 59 

General radix 16 1 
PE x 64 bits 

0.11µm CMOS 
synthesized 

61 Kgates 250 MHz Yes [6] n/a 7.3 

Scalable radix 8 16 
PEs x 16 bits 

0.5µm CMOS 
synthesized 

28 Kgates 64 MHz Yes [12] 1.6 46 

Systolic radix 16 
1024-bit 

Xilinx 
XC40250XV 

3317 LUTs 45 MHz No [1] n/a 12 

Tenca-Koç radix 2 
40 PEs x 8 bits 

0.5µm CMOS 
synthesized 

28 Kgates 80 MHz Yes [9] 3.8 88 

Systolic radix 16 
256-bit 

Xilinx 
XC40150XV 

909 LUTs 47 MHz No [1] 0.73 n/a 

Scalable high radix 0.5µm CMOS 
estimated 

33 Kgates 
(estimated) 

44 MHz Yes [11] 1.8 82 

 



Table I compares the times for 256-bit and 1024-
bit modular exponentiations for various Montgomery 
multiplier hardware implementations.  The 
exponentiation times are 2n+2 times that of a single 
modular multiplication.   

The scalable 16 PE design from this work 
consumes about half as many Virtex II LUTs as the 
improved radix-2 64 PEs × 16 design from [3], but 
performs 1024-bit modular exponentiation in 6.6ms 
as compared to 16ms.  Thus, FPGAs with dedicated 
multipliers are very well suited to very high radix 
Montgomery multiplication. 
 
5. Conclusions 
 

In summary, this paper has extended the scalable 
Tenca-Koç Montgomery multiplier to very high 
radices using a MAC in place of a carry-save adder.  It 
also extended the Mukaida-Tanenaka design by 
supporting multiple PEs.  The very high radix approach 
is well-suited to FPGA implementations because of 
their rich set of dedicated multipliers.  An 
implementation with 16 16×16 PEs uses 32 dedicated 
18×18 block multipliers and 2847 lookup tables to 
perform 1024-bit modular exponentiation in 6.6 ms. 

While the specific implementation used a square 
multiplier, the paper has generalized analysis for w × 
v-bit rectangular multipliers.  CIOS and FIOS offer 
tradeoffs in software implementations, but they both 
unroll onto the identical hardware pipeline.  

Several opportunities still exist for improving the 
very high radix design.  Quotient pipelining [8], [7] 
might be used to reduce the latency between 
processing elements.  If v < w, a subsequent PE may 
begin operating on the w-v bits that are immediately 
available without waiting for a shift [3].  By 
conditionally killing carries within the MAC, the 
algorithm extends to unified multipliers for GF(2n) as 
well as GF(p).  It would be interesting to investigate an 
ASIC implementation of this design in which tradeoffs 
may be made among w, v, and p to affect cycle time 
and cycle count. 
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