
Very High Radix Scalable Montgomery Multipliers

Kyle Kelley and David Harris
Harvey Mudd College

301 E. Twelfth St. Claremont, CA 91711
{Kyle_Kelley, David_Harris}@hmc.edu

Abstract

This paper describes a very high radix scalable

Montgomery multiplier. It extends the radix-2
Tenca-Koç scalable architecture using w × v – bit
integer multipliers in place of AND gates. The new
design can perform 1024-bit modular
exponentiation in 6.6 ms using 2847 4-input lookup
tables and 32 16 x 16 multipliers, making it the
fastest scalable design yet reported.

1. Introduction

Many cryptographic algorithms require modular
exponentiation of very long n-bit operands, which is
performed with repeated modular multiplications.
Typical values of n are 256-2048. Montgomery’s
modular multiplication algorithm [5] is widely used in
these applications because it avoids costly division
steps.

Much research has been devoted to hardware
implementations of Montgomery multipliers. [9]
describes a scalable radix-2 design that handles word
lengths independent of the width of the processing
elements and processes the multiplier one bit at a
time. [10] extends the scalable approach to radix-4,
handling two bits at a time. [1] proposes radix-4 and
radix-16 designs using precomputed multiples of the
operands, but the design is not scalable. [6] presents a
very high radix implementation, but focuses on
optimizing the memory interface to a single
bandwidth-constrained operand memory and uses a
single processing element.

This paper presents a very high radix scalable
Montgomery multiplier. It extends the scalable
architecture of [9] to radix 2v by using a w × v-bit
multiplier. It also improves on [6] by allowing for a
variable number of processing elements. We begin by
defining our notation and reviewing two algorithms for
very high radix Montgomery multiplication. Both
algorithms can be unrolled onto the same hardware

pipeline. We present the design of the processing
elements in the pipeline and analyze the system
latency. The very high radix designs have been mapped
onto Xilinx FPGAs and the results are compared with
competing implementations.

2. Montgomery multiplication

Montgomery multiplication is defined as

Z = (XYR-1) mod M

with the notation

X: n-bit multiplier
Y: n-bit multiplicand
M: n-bit odd modulus, typically prime
M’: n-bit integer satisfying RR-1 – MM’ = 1
R: the radix, 2n

R-1: modular multiplicative inverse of R
(RR-1) mod M = 1

It is performed with the following steps [5]:

Multiply: Z = X × Y
Reduce: reduce = Z × M’ mod R
 Z = [Z + reduce × M] / R
Normalize: if Z = M then Z = Z - M

reduce has the important property that Z + reduce

× M has 0’s in the n least significant positions. The
mod R and divide by R steps are trivial because R is a
power of 2, so Montgomery multiplication avoids
difficult divisions. The normalize step can be skipped
in certain repeated Montgomery multiplies, and so we
ignore it for the rest of this paper.

2.1. Tenca-Koç scalable radix-2 multiplier

The algorithm above can be implemented in a

straightforward fashion if n-bit adders and n x n–bit
multipliers are available. This becomes impractical
for large n (e.g. 1024). Moreover, we would like a

scalable design that can handle arbitrary values of n by
reusing fixed-width hardware.

Tenca and Koç [9] describe a scalable radix-2
implementation with w-bit processing elements (PEs)
using the algorithm in Fig. 1. Each PE iterates over v
= 1 bit of X at a time. It requires e = wn / steps for
the PE to handle all n bits of Y and M. In radix 2v, only
the v least significant bits of reduce are necessary
because Z is only right-shifted by v bits [2]. M’ is
always odd, so for radix 2, reduce simplifies to the
least significant bit of Z, Z0.

Z = 0
for i = 0 to n-1
 (CA, Zw-1:0) = Zw-1:0 + Xi × Yw-1:0

 reduce = Z0

 (CB, Zw-1:0) = Zw-1:0 + reduce × Mw-1:0

 for j = 1 to e
 (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + Xi × Y(j+1)w-1:jw + CA
 (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB

 Zjw-1:(j-1)w = (Zjw, Zjw-1:(j-1)w+1)

Fig. 1. Tenca-Koç scalable radix-2 Montgomery

multiplication algorithm

2.2. Very high radix

Scalable Montgomery algorithms can be
generalized to higher radices. [4] describes radix 2w
designs using w-bit processing elements, suitable for
software implementations with square multipliers.
This paper extends the generalization to radix 2v
designs using w-bit processing elements. These
designs require w × v – bit rectangular multipliers.

The following notation will be used to describe the
very high radix Montgomery multiplication
algorithms. Figures 2 and 3 extend two of the most
efficient algorithms from [4]. In coarsely integrated
operand scanning (CIOS), the multiplication and
reduction steps are separated for each v-bit digit of X.
In finely integrated operand scanning (FIOS), the
steps are combined for each digit of X and word of Y.
The algorithms use the following parameters.

w: word length
v: digit length
e: wn / , the number of words of Y, M to process

f: vn / , the number of digits of X to process

CA: v-bit carry digit
CB: v-bit carry digit

Z = 0
for i = 0 to f-1
 CA = 0
 for j = 0 to e+ -1
 (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + X(i+1)v-1:iv × Y(j+1)w-1:jw + CA

 CB = 0
 reduce = (M'v-1:0 × Zw-1:0)v-1:0

 for j = 0 to e+ -1
 (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB

 Zjw-1:(j-1)w = (Zjw+v-1:jw, Zjw-1:(j-1)w+v)

Fig. 2. Scalable radix-2v coarsely integrated
operand scanning algorithm

Z = 0
for i = 0 to f-1
 (CA, Zw-1:0) = Zw-1:0 + X(i+1)v-1:iv × Yw-1:0

 reduce = (M'v-1:0 × Zw-1:0)v-1:0

 (CB, Zw-1:0) = Zw-1:0 + reduce × Mw-1:0

 for j = 1 to e+ -1
 (CA, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + X(i+1)v-1:iv × Y(j+1)w-1:jw + CA
 (CB, Z(j+1)w-1:jw) = Z(j+1)w-1:jw + reduce × M(j+1)w-1:jw + CB

 Zjw-1:(j-1)w = (Zjw+v-1:jw, Zjw-1:(j-1)w+v)

Fig. 3. Scalable radix-2v finely integrated

operand scanning algorithm

Very high radix designs should use w = v because

each w-bit word is right-shifted by v bits in the
reduction step.

3. Hardware implementation

Fig. 4 shows the architecture of a scalable
Montgomery multiplier with a kernel of p PEs. Each
PE receives v bits of X and w bits of M, Y, and Z on
each step. In one kernel cycle, p v-bit digits of X are
processed. Hence, k = n/pv kernel cycles are
necessary to process all the bits of X.

Fig. 4. Scalable very high radix Montgomery

multiplier architecture

3.1. Processing elements

Fig. 5 shows the implementation of a processing
element. The weights of the lines indicate the bus

FIFO

0
YM

Mem

X Mem

PE1 PE2 PE3 PE p

Sequence
Control

Result

Z

M
Y

x
Kernel

Z’

first

M '

 +

w
v 1

 +

w
v 1

 +

w
v 1

Z

*

X

Y

reduce

M

M'

v

v+w
0
1

*

1 0
CA CB

w

w

v

v v

w+1

w w

v+w

w+1

v+w

YMZ to
next PE

Y

first

first to
next PE

v+w

w w

vv

v

w-vMAC MAC

uppe
r

low
e

r

v

Fig. 5. Processing element

widths. The PE contains a pair of multiply-accumulate
(MAC) circuits for the multiplication and reduction
steps. Feedback registers hold the running carries CA
and CB. At the beginning of the kernel cycle, the
second multiplier is also used to compute reduce. A
control path at the top of the PE indicates when X
should be latched and when reduce should be
computed and latched.

The PE is pipelined to offer single-cycle
throughput but four-cycle latency. This compares to
two-cycle latency in [9]. The greater latency permits
the cycle time to be limited to that of a single MAC.

3.1. Latencies

Fig. 6 shows the pipeline timing for a system with
three processing elements. The vertical axis
represents time and the horizontal represents PEs
(with two MAC columns per PE). On cycle 1, the first
MAC in PE 1 computes Zw-1:0 = Zw-1:0 + Xv-1:0 × Yw-1:0.
On each of the e+1 subsequent cycles, it processes
the same digit of X but the next word of Y and Z. On
cycle 2, the second MAC in PE 1 computes reduce =
M’v-1:0 × Zw-1:0 and saves the v-bit result. On cycle 3, it
reduces Zw-1:0 = Zw-1:0 + reduce × Mw-1:0. On cycle 4,
it reduces the next word Z2w-1:w = Z2w-1:w + reduce ×
M2w-1:w and right shifts Z by v bits to produce a new
least significant word of Z. On cycle 5, PE 2 can
begin using this least significant word of Z.

Recall that an entire multiplication requires k =
n/pv kernel cycles. The kernel cycle time is the
number of clock cycles until PE 1 can begin
processing the next digit of X. PE 1 cannot begin the
next kernel cycle until it has processed all the words
of Z and until PE p has produced the first word of Z.

Fig. 6. Hardware pipeline diagram p=3, e=4

The output of PE p is bypassed back to PE 1 through a
FIFO, adding one cycle of latency.

 This leads to two cases to determine the
multiplication latency. Case I corresponds to a large
number of words, e, relative to the number of
processing elements, p. Here there is no stall
between kernel cycles, and so the PE hardware is used
with maximal efficiency. Case II corresponds to a
large number of processing elements relative to the
number of words. As shown in Fig. 6, the first PE
must be stalled until the last PE finishes calculating
the first word of Z.

In general, to handle all the words of Y, a particular
PE must perform (e+2) cycles in one kernel cycle (or
in one iteration of the outer loop). There is a 4 clock
cycle latency between PEs. Thus, with p PEs, there is
a 4p delay before the first PE may begin processing
again. Therefore Case I occurs when (e+2)>4p and
Case II occurs when (e+2)<=4 p.

Zw-1:0

reduce

X
v-1:0

Yw-1:0

Zw-1:0

Y2w-1:w

Z
2w-1:w

Y
3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y
5w-1:4w

Z5w-1:4w

Y
6w-1:5w

Z
6w-1:5w

Y
w-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y
3w-1:2w

Z3w-1:2w

Y
4w-1:3w

Z
4w-1:3w

Y 5w-1:4w

Z
5w-1:4w

Y 6w-1:5w

Z6w-1:5w

Z
w-1:0

reduce

X2v-1:v

Y
w-1:0

Zw-1:0

Y
2w-1:w

Z
2w-1:w

Y3w-1:2w

Z
3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z
5w-1:4w

Y
6w-1:5w

Z6w-1:5w

Yw-1:0

Z
w-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z
3w-1:2w

Y
4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Y
6w-1:5w

Z6w-1:5w

Z
w-1:0

reduce

Yw-1:0

Z
w-1:0

Y
2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

Y
4w-1:3w

Z4w-1:3w

Y
5w-1:4w

Z5w-1:4w

Y6w-1:5w

Z
6w-1:5w

Yw-1:0

Zw-1:0

Y
2w-1:w

Z2w-1:w

Y
3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z
4w-1:3w

Y5w-1:4w

Z
5w-1:4w

Y6w-1:5w

Z
6w-1:5w

X3v-1:2v

Zw-1:0

reduce

Yw-1:0

Z
w-1:0

Y2w-1:w

Z
2w-1:w

Y3w-1:2w

Z
3w-1:2w

Y
4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Yw-1:0

Z
w-1:0

Y
2w-1:w

Z2w-1:w

Y 3w-1:2w

Z3w-1:2w

Yw-1:0

Zw-1:0

K
er

ne
l S

ta
ll

PE 1 PE 2 PE 3

K
e

rn
el

 C
yc

le
 1

K
er

ne
l C

yc
le

 2

X4v-1:3v

X5v-1:4v

… … … … … …

1

Cycle #

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Case I: The first PE is used continuously e+3
times per kernel cycle for k kernel cycles (the kernel
cycle time has been increased by one to avoid
resource contention of the multiplier in MAC 2,
which is used in the reduce calculation). Then each
remaining PE requires 4 more cycles to complete.
Finally there are 2 extra cycles needed for the
reduction MAC to finish and shift. Therefore the total
delay dI is

 dI = k(e+3) + 4(p-1) + 2

Case II: Each kernel cycle takes 4p cycles until the
first word of Z is ready, plus 1 to bypass the result
back to the 1st PE through the queue. Thus k(4p+1)
cycles are needed. The last kernel cycle has an
additional delay for the final PE to finish its
processing. Since this PE takes e+4 cycles (including
2 cycles for the reduction MAC to finish and shift),
but 5 of them have already been accounted for, there
are e+4-5 = e-1 cycles remaining. Therefore the total
delay dII is

 dII = k(4p+1) + (e - 1)

Rewriting these delays in terms of the design
parameters n, w, v, and p, we obtain

24
32

−++= p
pv
n

wvp
n

d I
 for wpwn 24 −>

1
4

−++=
w
n

vp
n

v
n

d II
 for wpwn 24 −≤

These delays are similar those in [9], except the 2
cycle latency between processing elements is now 4
because multiplication and reduction take place in
separate cycles. When there are relatively few small
PEs, the area-delay product is approximately n2, and
so this design is efficient. In Case II the latency
approaches n(4/v + 1/w) with large amounts of
hardware, and so the area-delay product is
approximately np(4w+v).

4. Results

The very high radix Montgomery multiplier was
coded in Verilog parameterized by p, w, and v, and
verified against a C reference model. It was
synthesized using Synplicity Pro targeting a Xilinx
Virtex-II speed grade 6 XC2V2000-6 FPGA [13]. The
results were not verified on an actual chip. Each PE
requires 2 MACs. Each MAC uses a dedicated 18×18
block multiplier and two carry-propagate adders. The
intrinsic size of the multipliers makes w = v = 16 a
sweet spot for this design.

The complete radix 216 Montgomery multiplier
(including sequencing hardware) contains 2847 LUTs,
32 multipliers, and approximately 5n bits of RAM for
the FIFO and operand storage. It operates at a worst-
case 102 MHz, limited by the MAC.

Table I. Comparison of modular exponentiation times

Description Technology Hardware Clock Speed Scalable Reference 256-bit time (ms) 1024-bit time
(ms)

Scalable radix 216
16 PEs x 16 bits

Xilinx Virtex II 2847 LUTs
+ 32 mults
+ ~5n RAM

102 MHz Yes This work 0.40 6.6

Scalable radix 216 4
PEs x 16 bits

Xilinx Virtex II 780 LUTs
+ 8 mults
+ ~5n RAM

102 MHz Yes This work 0.45 22

Improved radix 2
64 PEs x 16 bits

Xilinx Virtex II 5598 LUTs
+ ~5n RAM

144 MHz Yes [3] 1.0 16

Improved radix 2
16 PEs x 16 bits

Xilinx Virtex II 1514 LUTs
+ ~5n RAM

144 MHz Yes [3] 1.1 59

General radix 16 1
PE x 64 bits

0.11µm CMOS
synthesized

61 Kgates 250 MHz Yes [6] n/a 7.3

Scalable radix 8 16
PEs x 16 bits

0.5µm CMOS
synthesized

28 Kgates 64 MHz Yes [12] 1.6 46

Systolic radix 16
1024-bit

Xilinx
XC40250XV

3317 LUTs 45 MHz No [1] n/a 12

Tenca-Koç radix 2
40 PEs x 8 bits

0.5µm CMOS
synthesized

28 Kgates 80 MHz Yes [9] 3.8 88

Systolic radix 16
256-bit

Xilinx
XC40150XV

909 LUTs 47 MHz No [1] 0.73 n/a

Scalable high radix 0.5µm CMOS
estimated

33 Kgates
(estimated)

44 MHz Yes [11] 1.8 82

Table I compares the times for 256-bit and 1024-
bit modular exponentiations for various Montgomery
multiplier hardware implementations. The
exponentiation times are 2n+2 times that of a single
modular multiplication.

The scalable 16 PE design from this work
consumes about half as many Virtex II LUTs as the
improved radix-2 64 PEs × 16 design from [3], but
performs 1024-bit modular exponentiation in 6.6ms
as compared to 16ms. Thus, FPGAs with dedicated
multipliers are very well suited to very high radix
Montgomery multiplication.

5. Conclusions

In summary, this paper has extended the scalable
Tenca-Koç Montgomery multiplier to very high
radices using a MAC in place of a carry-save adder. It
also extended the Mukaida-Tanenaka design by
supporting multiple PEs. The very high radix approach
is well-suited to FPGA implementations because of
their rich set of dedicated multipliers. An
implementation with 16 16×16 PEs uses 32 dedicated
18×18 block multipliers and 2847 lookup tables to
perform 1024-bit modular exponentiation in 6.6 ms.

While the specific implementation used a square
multiplier, the paper has generalized analysis for w ×
v-bit rectangular multipliers. CIOS and FIOS offer
tradeoffs in software implementations, but they both
unroll onto the identical hardware pipeline.

Several opportunities still exist for improving the
very high radix design. Quotient pipelining [8], [7]
might be used to reduce the latency between
processing elements. If v < w, a subsequent PE may
begin operating on the w-v bits that are immediately
available without waiting for a shift [3]. By
conditionally killing carries within the MAC, the
algorithm extends to unified multipliers for GF(2n) as
well as GF(p). It would be interesting to investigate an
ASIC implementation of this design in which tradeoffs
may be made among w, v, and p to affect cycle time
and cycle count.

10. References

[1] T. Blum and C. Paar, “High-radix Montgomery

multiplication on reconfigurable hardware,” IEEE Trans.
Computers, vol. 50, no. 7, July 2001, pp. 759-764.

[2] S. Dusse and B. Kaliski, “A cryptographic library for the
Motorola DSP56000,” Eurocrypt 90, Lecture Notes in
Computer Science, No. 473, I. B. Damgaard, ed.,
Springer-Verlag, New York, 1990, pp. 230-244.

[3] D. Harris et al., “An improved unified scalable radix-2
Montgomery multiplier”, submitted to IEEE Symp.
Computer Arithmetic, 2005.

[4] Ç. Koç, T. Acar, B. Kaliski, “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, June
1996, pp. 26-33.

[5] P. Montgomery, “Modular multiplication without trial
division,” Math. Of Computation, vol. 44, no. 170, pp.
519-521, April 1985.

[6] K. Mukaida, M. Takenaka, N. Torii, and S. Masui,
“Design of high-speed and area-efficient Montgomery
modular multiplier for RSA algorithm,” IEEE Symp. VLSI
Circuits, pp. 320-323, 2004.

[7] H. Orup, “Simplifying quotient determination in high-radix
modular multiplication,” Proc. 12th IEEE Symp.
Computer Arithmetic, pp. 193-199, 1995.

[8] M. Shand and J. Vuillemin, “Fast implementations of RSA
cryptography,” Proc. 11th IEEE Symp. Computer
Arithmetic, pp. 252-259, 1993.

[9] A. Tenca and Ç. Koç, “A scalable architecture for
modular multiplication based on Montgomery’s algorithm,”
IEEE Trans. Computers, vol. 52, no.9, Sept. 2003, pp.
1215-1221.

[10] A. Tenca and L. Tawalbeh, “An efficient and scalable
radix-4 modular multiplier design using recoding
techniques,” Proc Asilomar Conf. Signals, Systems,
and Computers, pp. 1445-1450, 2003.

[11] G. Gaubatz, “Versatile Montgomery multiplier
architectures,” M.S. Thesis, Worcester Polytechnic
Institute, Dept of Electrical Engineering, April 2002.

[12] G. Todorov, “ASIC design, implementation and analysis of
a scalable high-radix Montgomery multiplier,” M.S.
Thesis, Oregon State University, June 2001.

[13] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform
FPGAs Datasheet, June 30, 2004, www.xilinx.com.

