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Abstract— Power dissipation is currently one of the most
important design constraints in digital systems. In order to
reduce power and energy demands in the foremost technology,
namely CMOS, it is necessary to reduce the supply voltage to
near the device threshold voltage. Existing analytical models
for MOS devices are either too complex, thus obscuring the
basic physical relations between voltages and currents, or they
are inaccurate and discontinuous around the region of interest,
i.e., near threshold. This paper presents a simple transregional
compact model for analyzing digital circuits around the threshold
voltage. The model is continuous, physically derived (by way
of a simplified inversion-charge approximation), and accurate
over a wide operational range: from a few times the thermal
voltage to approximately twice the threshold voltage in modern
technologies.

Index Terms— Circuit simulation, digital circuits, EKV, inte-
grated circuit modeling, low-power electronics, minimum-energy
point, near-threshold CMOS, subthreshold CMOS.

I. INTRODUCTION

POWER and energy dissipation are critical design con-
straints in modern digital systems. Minimizing power

and energy consumption in CMOS—the dominant digital
circuit technology—requires supply voltage scaling below the
process nominal supply voltage (VDD). The minimum-energy
operating point can occur below the device threshold voltage
(Vt ) or above it, and is a function of process parameters
and environmental factors (such as activity factor) [1]–[4].
Even with additional constraints (e.g., performance, reliability,
yield), the energy-optimal operating point typically occurs
near the threshold voltage [5]–[8]. For these reasons, there
is considerable interest in the analysis of circuits operating
near threshold.

Modeling and analysis in this region of interest, around the
threshold voltage, is complicated by the fact that even a rather
narrow range of a few hundred millivolts around Vt spans three
distinct MOSFET operating regimes: weak inversion, moder-
ate inversion, and strong inversion. Conventional compact dig-
ital MOSFET models—the linear/quadratic strong-inversion
model [9], the alpha-power-law model [10], [11], and the
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exponential weak-inversion model [9]—are discontinuous and
inaccurate around Vt . Accurate continuous models exist [12],
and some have been applied to digital circuit analysis.
Nevertheless, it is apparent from [4] that even the simplest
of continuous models are difficult to work with and yield
complicated expressions for digital circuits (e.g., delay and
energy) that somewhat obscure the relationship to supply
voltage.1 This relational complexity speaks to a clear need for
MOS models that are simple enough to work with and reason
about, while being sufficiently accurate to yield usable results.
One of the goals of this paper is to address this problem; that
is, to clarify the energy and delay relationship to the supply
voltage (near threshold) by deriving a new simplified drain
current model.

Compact MOS models are usually developed to be used
in conjunction with numerical solvers and circuit simulators,
as opposed to being designed for hand calculations. The
most accurate of these models tend to have the greatest
computational complexity and are the most difficult to work
with by hand, while the simplest have reduced computational
complexity at the expense of accuracy. Circuit simulation,
along with the associated models, certainly plays an important
role in digital system design; however, simple models and
hand analysis can give the designer deeper insight into key
tradeoffs, potential circuit problems, and optimizations than
can be achieved by simulation alone. This paper presents a
MOS device model designed specifically for hand calculations
involving digital circuits.

Toward the goal of reducing model complexity, a number
of simplifications are made throughout this paper. One such
simplification reduces the drain-current (Ids) model to a digital
current model. In digital circuit design, first-order approxima-
tions for important characteristics (e.g., energy and delay) of
large gate networks require only two MOSFET models: 1) the
drain current of a logically “ON” transistor (ION) as a function
of VDD and 2) the drain current of a logically “OFF” transistor
(IOFF). Simple but accurate models for IOFF exist, and those that
include short channel effects are adequate. On the other hand,
there is a need for new ION models that are accurate across
all operating regimes. Using ION and IOFF in lieu of a general
Ids model eliminates a number of variables and reduces model
complexity but is only appropriate for digital applications.

This paper presents a simple physically derived inverted-
charge MOS device model for ION (41) that is accurate
for supply voltages ranging from a few times the thermal
voltage to approximately twice the threshold voltage in modern

1Markovic et al.[4] acknowledge this complexity.
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technologies; i.e., it is transregional. Since this model is
approximately centered at Vt , it is referred to throughout as
the near-threshold model. The model is continuous and also
continuous in the first derivative; it makes use of three process-
independent fitting parameters, and these parameters are
stable. That is, these fitting parameters remain constant and the
model remains accurate across different process technologies.
Moreover, this paper shows the model to be accurate across
four different commercial technologies from two different
foundries ranging from 40 to 90 nm. The organization of
the remainder of this paper is as follows. Section II gives
the derivation of the near-threshold model. Section III applies
the model derived in Section II to several problems. Section
IV discusses related work, and Section V concludes this paper.

II. COMPACT NEAR-THRESHOLD ION MODEL

It is tempting to avoid the considerable trouble of develop-
ing a physical model, and rather to use an empirical curve-
fit as the foundation for a simplified transregional model.
The problem with a purely empirical approach—even if the
model is only intended for digital circuit analysis—is twofold.
First, it is difficult to stabilize the model with respect to
physical parameters that vary, such as the threshold voltage.
Second, it is difficult to trust such a model; it is not clear
how the fitting constants might change in new or different
technologies. Fortunately, there are a number of established
physical MOS models and approaches to compact modeling.
One such approach, namely inversion-charge modeling, is used
in this paper to generate the near-threshold model.

Inversion-charge models differ from the classic surface-
potential-based models in that they make explicit the relation
between MOS terminal voltages and the inversion-charge
density (e.g., the charge due to electrons below the gate of an
NFET). A continuous expression for drain current as a function
of terminal voltages follows directly from this explicit relation
when applied to the Pao–Sah [13] model. The inversion-charge
density to terminal voltage relation is difficult to compactly
model, and the choice of simplifying approximations is a key
differentiating factor between inversion-charge models.

The goal of this section is to derive a new analytical expres-
sion for the NFET drain current of an “ON” transistor, ION,
where ION is defined as the drain current when Vgb = Vdb =
VDD and Vsb = 0V . This expression for ION and the derivation
are also applicable to a PFET; however, the corresponding
derivation is not presented in this paper. The derivation begins
with the quasi-static long-channel model for an NFET in terms
of gate, source, and drain voltages, all relative to the bulk along
the lines of the C. C. Enz, F. Krummenacher, and E. A. Vittoz
(EKV) model derivation presented in [14]; as such, some of
the content presented in Sections II-A and II-B is a review.
It is a long/wide-channel inversion-charge model that makes
use of the linearization of inversion charge to surface potential.
The derivation starts with a well-accepted expression for drain
current in terms of a diffusion component and a drift compo-
nent, which is reduced to an expression where the drain current
is proportional to a one-dimensional integral from the source
potential to the drain potential of the mobile inversion charge

Fig. 1. NFET physical view.

(i.e., electrons) in the channel. A number of normalizations
are applied to simplify the expression, and the integral is
broken into an equivalent difference expression. Next, an
expression is given for the mobile inversion charge in terms
of the normalized gate, source, drain, and threshold voltages.
This expression is directly solved for the mobile inversion
charge without approximation—a task that previous works
were unable to accomplish. Additionally, several approxima-
tions are explained, and a new approximation that yields the
near-threshold model is presented. These approximations for
mobile inversion charge can be directly applied to the integral
expression for drain current to give drain current in terms of
the terminal voltages. Finally, this drain-current expression is
further simplified to give ION as a function of VDD.

A. Drain-Current Model

Consider an NFET labeled as in Fig. 1. The stan-
dard long/wide-channel expression for drain current is given
by (1). See [12] and [15] for a full derivation and a discussion
of the physical assumptions required for validity.

Ids(x) = µW
(

−Q′
i
dψs

dx
+ φt

d Q′
i

dx

)
(1)

where µ is the effective electron mobility, W is the channel
width, Q′

i (x) is the mobile inversion charge per unit area as
a function of position along the channel, φt is the thermal
voltage,2 and ψs(x) is the surface potential (the potential drop
from the semiconductor surface to deep into the body). The
first term, −Q′

i (dψs/dx), models drift, and the second term,
φt (d Q′

i/dx), models diffusion.
Assuming a constant channel width, constant electron

mobility, the charge sheet approximation (the entire mobile
inversion charge is at the surface potential), and the gradual
channel approximation (the electric field along the z-axis is
much larger than that along the x-axis), (1) reduces to (2); see

2Note that φt = (kBT /q), where kB is the Boltzmann constant, T is the
absolute temperature, and q is the magnitude of the electrical charge on the
electron.
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[14] and [15] for a full discussion.

Ids = µC ′
ox

W
L

∫ Vd

Vs

−Q′
i

C ′
ox

dVc (2)

where C ′
ox is the oxide capacitance per unit area, L is the

channel length, and Vc(x) is the channel potential which rep-
resents the quasi-Fermi potential of electrons in the channel as
a function of position; to the first order, it varies monotonically
from the source to the drain, i.e., from Vs to Vd .3

For a fixed Vg and Vs , as Vd increases, the device eventually
enters the saturation region. This is due to the drain end
of the channel pinching off as it enters weak inversion and
the mobile inversion charge becomes negligible. Intuitively,
this happens anywhere along the channel where the channel
voltage is sufficiently large. In general, this property can be
stated as the assumption that

lim
Vc→∞

Q′
i = 0. (3)

As such, (2) can be broken into two parts: a forward current
I f which is independent of Vd , and a reverse current Ir which
is independent of Vs . That is

Ids = µC ′
ox

W
L

∫ ∞

Vs

−Q′
i

C ′
ox

dVc

︸ ︷︷ ︸
I f

− µC ′
ox

W
L

∫ ∞

Vd

−Q′
i

C ′
ox

dVc

︸ ︷︷ ︸
Ir

. (4)

In order to solve this integral, the relationship between the
channel potential and the mobile inversion charge needs to
be established; however, the precise relation is quite compli-
cated. One simple approach is to assume a linear relationship
between the mobile inversion charge and the surface potential.
This greatly reduces the complexity of the problem and yields
a constant of proportionality, n, which is the slope factor.
From [16]

n = Q′
i

C ′
ox(ψs − ψp)

(5)

where ψp is the pinch-off surface potential, i.e., the surface
potential at which the inversion charge becomes zero.

Before solving (4), it is convenient to normalize the terms
to unitless quantities using

qi = −Q′
i

2nφt C ′
ox

I0 = 2nµC ′
ox

W
L
φ2

t

vc = Vc

φt

i = I
I0

Vs

vs
= Vd

vd
= Vg

vg
= φt

Ids

ids
= I f

if
= Ir

ir
= I0. (6)

3Terminal voltages are body-referenced unless otherwise specified.

Equation (2) now simplifies to

ids =
∫ vd

vs

qi dvc (7)

and (4) becomes

ids =
∫ ∞

vs

qi dvc

︸ ︷︷ ︸
if

−
∫ ∞

vd

qi dvc

︸ ︷︷ ︸
ir

. (8)

Since the model is symmetric with respect to the source and
drain, the forward and reverse component are of the same
form; it is convenient to use a combined notation so as to
work with both expressions (if and ir ) simultaneously. That is

i f,r =
∫ ∞

vs,d

qi dvc. (9)

Finally, all that is needed to solve (9) is an expression for qi ,
thus yielding an expression for drain current in terms of the
three transistor terminal voltages—a goal of this section.

In normalized terms, the relation between mobile inversion-
charge density and channel potential can be expressed as
(see [14] for details)

2qi + lnqi = v p − vc (10)

where v p = (Vp/φt ) is the pinch-off voltage, defined in [17]
and [18] as

v p = ψp − ψ0 (11)

where ψ0 is a process-dependent term with various approxi-
mations used in the literature. Conveniently, v p can be approx-
imated with common terms as

v p ≈ Vg − Vt

nφt
(12)

where Vt is the threshold voltage [16], [17].
Equations (10) and (12) give the relation between the gate

and channel potential and the mobile inversion charge with the
process-dependent component compacted into the definition
of v p . Different [15] and more accurate [18] relations exist,
but (10) is simple, practical, and differentiable

dvc = −dqi

(
2 + 1

qi

)
. (13)

Substituting this expression for dvc into (9) and integrating
results in

i f,r = q2
s,d + qs,d (14)

where qs is the normalized mobile inversion charge at the
source end of the channel, and similarly for qd at the drain
end. Applying (10) to the source and drain ends of the channel
yields

v p − vs,d = 2qs,d + lnqs,d . (15)

Prior work (see [14] and [18]) assumed that (15) [and (10)]
is not invertible, but it actually can be inverted by using the
principal branch of the Lambert W function. The Lambert W
function is defined as the root of

W(z)eW(z) = z (16)
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Fig. 2. (a) Equation (19). (b) Equation (35) (near-threshold Model).
(c) Equation (26) (strong-inversion approximation). (d) Equation (22) (weak-
inversion approximation).

for any complex number z, (see [19] for details). The function
dates back to the days of Euler and has been recently used in
several related works (see Section IV).

After exponentiation, (15) can be rearranged as

2qs,de2qs,d = 2ev p−vs,d . (17)

Applying the Lambert W function4 to (17) gives the closed-
form expression

qs,d = W0
(
2ev p−vs,d

)

2
. (18)

Analogously, applying the Lambert W function to (10) gives
the closed-form expression

qi = W0
(
2ev p−vc

)

2
(19)

[depicted in Fig. 2(a)]. This expression for qi proves useful
for making approximations in Section II-C.

4When the domain of the Lambert W function is restricted to the nonneg-
ative reals, the co-domain reduces to that of the reals, and W(z) has a single
value denoted by the principal branch W0(z).

Fig. 3. (a) Equation (20). (b) Equation (36) (near-threshold approximation).
(c) Equation (27) (strong-inversion approximation). (d) Equation (23) (weak-
inversion approximation). (e) Equation (28) (EKV continuous approximation).

Finally, (18) can be directly applied to (14), giving a new
closed-form expression for normalized drain current

i f,r =
(

W0
(
2ev p−vs,d

)

2

)2

+ W0
(
2ev p−vs,d

)

2
. (20)

This expression for i f,r is exact, while the EKV approxi-
mation [14], discussed in Section II-B and given by (28), has
a maximum absolute error of 21%. Using a more accurate
approximation for inversion charge, e.g., [18] and then using
the Lambert W function to give an exact expression for
inversion charge may further improve total model accuracy;
however, this analysis falls outside of the scope of this paper
and is left as future work.

Fig. 3(a) depicts (20), and it makes clear the nonlinear
nature of drain current as a function of the terminal voltages.
It also helps relate if,r to the standard operating regimes: weak,
moderate, and strong inversion. The model presented in this
paper is symmetric with respect to the source and drain;
however, the ultimate goal of this derivation is to generate
a model for ION wherein the drain end of the channel is tied
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TABLE I

OPERATING REGIME BOUNDS FOR ION

to VDD and the source end to the body. From this and (15), it
follows that qs > qd ,5 i.e., the inversion charge density at the
source end of the channel always exceeds that of the drain end.
From (14), it follows that if > ir , and so the operating regime
is determined exclusively by if and correspondingly v p − vs .
The drain end of the channel and the drain dependent current
ir are pinned in the weak-inversion regime. The boundaries
between the operating regimes are approximated in Table I.6 It
should be noted that, in the general case, the operating regime
can be determined by the larger of if or ir .

B. Existing Drain-Current Approximations

There are three well-accepted approximations for i f,r :
a simple weak-inversion approximation, a simple strong-
inversion approximation, and a continuous approximation
which is valid in all operating regions. The weak- and strong-
inversion approximations, along with the new near-threshold
model, are generated by modeling the mobile inversion charge
as a function of the terminal voltages; Figs. 2 and 3 graphically
depict these charge and current approximations, respectively.

In weak inversion, v p − vc ≪ 0, and from (10) it follows
that 2qi + lnqi ≪ 0. The logarithmic term dominates, so

v p − vc ≈ lnqi (21)

qi ≈ ev p−vc . (22)

[See Fig. 2(d).] Integrating (9) with this approximation gives

if,r ≈ ev p−vs,d (23)

which is depicted in Fig. 3(d). Removing the normalization,
letting the approximation become an equality, and combining
the forward and reverse components yields a well-known
equation for subthreshold drain current

Ids = I0e
Vg−Vt

nφt

(
e

−Vs
φt − e

−Vd
φt

)
. (24)

In strong inversion, v p − vc ≫ 0, so the logarithmic term
in (10) is negligible. That is

v p − vc ≈ 2qi (25)

qi ≈ v p − vc

2
. (26)

[See Fig. 2(c).] With (9)

if,r ≈
(

v p − vs,d

2

)2

(27)

as depicted in Fig. 3(c).

5This requires that VDD is a positive value relative to the body.
6Analytical bounds on operating regimes can be found in [12].

Finally, the continuous EKV approximation [14] given by

if,r ≈ ln2
[

1 + e
v p−vs,d

2

]
(28)

as depicted in Fig. 3(e), is accurate over all operating regimes
(at the expense of increased complexity).

C. Transregional Near-Threshold Drain-Current
Approximation

This subsection presents a new inversion-charge approxi-
mation and the corresponding drain-current approximation for
digital circuits. The model is simpler than the EKV model and
continuously models digital devices operating across weak,
moderate, and strong inversion. Consider (10); in weak inver-
sion, the logarithmic terms dominates and in strong inversion
the linear term dominates. In moderate inversion, neither
term dominates, so a simple approximation is not possible.
Fortunately, the exact expression for charge, i.e., (19), can be
simplified for a narrow range of v p − vc.

First, assuming that qi > 0, taking the logarithm of both
sides of (19) gives

lnqi = lnW0
(
2ev p−vc

)
− ln2. (29)

Next, from [20], for x > 0 and W0(x) > 0

lnW0(x) = lnx − W0(x). (30)

As such, (29) can be expressed as

lnqi = v p − vc − W0(2ev p−vc ). (31)

Next, [19] shows that W(ex ) can be approximated by a Taylor
series expansion. As such, (31) can be written as

lnqi ≈ v p − vc − P(v p − vc) (32)

for some polynomial P , wherein the coefficients and validity
range are a function of v p − vc. The optimal polynomial
approximation for a particular range of interest can be calcu-
lated to a high degree, but this does not aid in the simplification
of the problem at hand. The approach taken in this paper
is to use a degree-2 polynomial and to curve-fit the entire
expression. That is

lnqi ≈ ka + kb(v p − vc) + kc(v p − vc)
2 (33)

where ka , kb, and kc are fitting constants.
Finally, letting k f = eka , vω = v p − vc, and exponentiating

both sides of (33) gives

qi ≈ k f ekbvω+kcv2
ω . (34)

In order to calculate if,r , integration is necessary, so it is helpful
to approximate (34) as

qi ≈ k0(k1 + 2k2vω)ek1vω+k2v2
ω (35)

where k0, k1, and k2 are new fitting constants.7 (See Fig. 2(b)
for a graphical depiction.)

7This is valid because taking the logarithm of both sides of (35) gives
lnqi ≈ lnk0(k1+2k2vω)+k1vω+k2v2

ω . Using the first few terms of the Taylor
series for the ln term on the RHS reduces the entire RHS to a polynomial
with new coefficients, i.e., lnqi ≈ P(vω). As such, removing high-order terms
and exponentiating both sides gives (34).
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TABLE II

NEAR-THRESHOLD MODEL FITTING CONSTANTS—ERROR REPORTED

FOR i f,r [i.e., (36) COMPARED TO (20)]

After substituting (35) into (9) and integrating, the resulting
expression for normalized drain current can be expressed as

if,r ≈ k0ek1vϖ+k2v2
ϖ (36)

where vϖ = v p − vs,d . Fitting this expression in the near-
threshold region, −8 < v p − vs,d < 10, (see Section II-D
for boundary definition) gives the fitting constants given in
Table II (used throughout this paper). (See Fig. 3(b) for a
graphical depiction.)

Note that, because of the definition of the pinch-off voltage
and the use of normalized variables, the fitting constants
(k0, k1, k2) are process-independent.

Finally, combining this expression for if,r [i.e., (36)] with
(8) gives

ids = k0ek1(v p−vs )+k2(v p−vs )2 − k0ek1(v p−vd )+k2(v p−vd )2
. (37)

Removing the normalization, and using (12) to approximate
v p yields

Ids = I0k0e
k1

(
Vg−Vt

nφt
− Vs
φt

)
+k2

(
Vg−Vt

nφt
− Vs
φt

)2

−I0k0e
k1

(
Vg−Vt

nφt
− Vd
φt

)
+k2

(
Vg−Vt

nφt
− Vd
φt

)2

. (38)

Now, referencing all voltages to the source instead of the body
and assuming that Vsb = 0V gives

Ids = I0k0ek1
Vgs−Vt

nφt
+k2(

Vgs−Vt
nφt

)2

×
⎛

⎝1 − e
k1

−Vds
φt

+k2
n2V 2

ds−2nVdsVgs+2nVdsVt

n2φ2
t

⎞

⎠. (39)

For ION, VDD = Vgs = Vds, so

ION = I0k0e
k1

VDD−Vt
nφt

+k2

(
VDD−Vt

nφt

)2

×
⎛

⎝1 − e
k1

−VDD
φt

+k2
n2V 2

DD−2nV 2
DD+2nVDDVt

n2φ2
t

⎞

⎠. (40)

Assuming that VDD is both a few times larger than φt and
less than twice the threshold voltage allows the terms within
parentheses to be approximated as unity, and letting VDT =
VDD − Vt , yields

ION = I0k0ek1
VDT
nφt

+k2

(
VDT
nφt

)2

. (41)

Equation (41) gives the drain current of a logically “ON”
transistor as a function of the supply voltage—the goal of
this section and one of the main goals of this paper. Within
this expression, the constants k0, k1, and k2 are process-
independent, and the process-dependent terms are contained

in the definitions of I0, n, and Vt . The definition of I0
[i.e., (6)] also contains the sizing ratio (W/L). This ratio
is intentionally kept within the definition of I0 through-
out, because, in short/narrow-channel devices, modifying gate
dimensions can affect some or all of the process dependent
terms. As with most compact models, short/narrow-channel
effects can be included in the near-threshold model as needed.8

Additionally, regions of validity for both W and L can be
established before using the near-threshold model (or any
compact model) to calculate drain current as a function of
either term.

D. Near-Threshold Model Validation

Fig. 3 depicts the different approximations for normal-
ized drain current as a function of the transistor terminal
voltages. It is clear that each approximation has a particular
region of validity. The region boundaries are difficult to
determine analytically but can be readily defined in terms
of a maximum error. The original EKV approximation, i.e.,
(28), has a maximum absolute error of 21% compared to the
analytical drain-current expression given by (20). The EKV
approximation is a useful and well-accepted model, so the
corresponding maximum absolute error of 21% against (20)
can also be used as a validity bound for the other drain-current
approximations. Table III provides the region boundaries in
terms of both normalized voltages and currents, along with
the mean absolute error.

The near-threshold model is further validated by application
to four commercial bulk CMOS processes from two dif-
ferent foundries. Nominal devices, high-threshold transistors
(HVT), and low-threshold transistors (LVT) are modeled in a
40-nm low-power (LP) technology, a 65-nm LP technology,
a 65-nm general-purpose (GP) technology, and a 90-nm GP
technology.9 The foundry-provided BSIM4 models for each
technology node are used as the basis for comparison and
for parameter extraction. Parameter extraction is performed by
way of a least-squares fit. This method of parameter extraction
is common and convenient, but it has shortcomings. In simpli-
fied models, such as those presented in this paper, the extracted
parameters may not correspond to the physical parameters
that they are intended to represent. This is especially true of
parameters that are greatly impacted by short-channel effects,
e.g., Vt which is affected by drain-induced barrier lowering
(DIBL) [21].

Figs. 4 and 5 each overlay the near-threshold model on
top of the corresponding BSIM4 simulation of the 40-nm LP
and 65-nm GP technologies, respectively. In these figures, the
near-threshold model is plotted for the entire VDD range to
make clear how the model deviates outside of its range of
applicability. Table IV gives the lower and upper bounds on
model applicability along with error rates (relative to BSIM4
simulation) and extracted parameter values. Table IV also
specifies the device dimensions and provides the data for

8See [12] for an example of incorporating short-channel effects into a
strong-inversion model.

9The 90-nm technology only includes nominal and LVT devices, so 90-nm
HVT devices are not modeled.



KELLER et al.: MODEL FOR DIGITAL CMOS CIRCUITS OPERATING NEAR THRESHOLD 2047

TABLE III

MODEL VALIDITY REGIONS (BOUNDED BY A MAXIMUM ABSOLUTE ERROR OF 21%)

Fig. 4. Equation (36) (near-threshold model) plotted for entire VDD range
against SPICE simulation of BSIM4 model of a 40-nm LP process with
minimum-size devices. (a) NFET. (b) PFET.

LVT and HVT devices (where applicable). Note that the error
associated with HVT devices tends to be greater than that of
the corresponding regular devices. This can be attributed to
modeling error at the low end of the VDD range; that is, with
HVT devices, the quantity v p − vs,d can be less than the near-
threshold model lower bound given in Table III.

III. NEAR-THRESHOLD MODEL APPLICATIONS

The goal of this section is to demonstrate the applicability
of the near-threshold model to digital circuit analysis in a

Fig. 5. Equation (36) (near-threshold model) plotted for entire VDD range
against SPICE simulation of BSIM4 model of a 65-nm GP process with
minimum-size devices. (a) NFET. (b) PFET.

modern technology. The model is first used to generate a
closed-form analytical expression for delay, which is then used
to give a closed-form equation for energy, and this is used to
determine the minimum-energy operating point as a function
of activity factor and frequency. Finally, parameter variation is
incorporated into the model, and closed-form expressions for
the stochastic path-delay are derived. All of these analyses,
which yield closed-form expressions, leverage the simplicity
of a digital ION model designed for hand calculations.

Model validity is determined by comparing the analytical
expressions against corresponding BSIM4 SPICE simulations,
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TABLE IV

NEAR-THRESHOLD MODEL COMPARED TO SPICE SIMULATION OF BSIM4 MODEL FOR COMMERCIAL TECHNOLOGIES (AT 70 °C). THE CIRCUIT

PARAMETERS Vt , I0 , AND n ARE EXTRACTED FROM A LEAST-SQUARES FIT AGAINST THE CORRESPONDING BSIM4 SIMULATION

and the errors are reported. For simplicity, chains of minimum-
size inverters are used as a basis throughout; minimum-size
devices are typical of circuits designed to minimize energy
in the near-threshold region. Chains of other gates can be
normalized to this basis; the delays of more complex digital
circuits, e.g., a ripple-carry adder, track that of the inverter over
a wide supply voltage range [6]. Similar analyses also make
use of inverters as a canonical basis for analytical evaluation,
see [3] and [22]. Furthermore, Table V (in Section III-A)
reports the error (as compared to SPICE) when the closed-
form delay model is applied to combinational gates other than
minimum-size inverters.

A. Delay Model

Numerous delay models of varying accuracy and complexity
have been used to model the switching delay of gates operating
at superthreshold, see [1], [23], and [24]. For circuits operating
subthreshold and near threshold, [2]–[4], [6] use and validate
a simple linear RC-delay model. That is, the delay of a gate
can be approximated as

tpd = k f Cload
VDD

ION
(42)

where Cload is the load capacitance, and k f is a small fitting
constant. This fitting constant serves to normalize the RC
time constant and is necessary because propagation delay
more closely tracks the drain current of devices that are only
partially “ON” [23].

Using the near-threshold model for ION [i.e., (41)], tpd from
(42) can be expressed as

tpd = k f Cload

k0 I0
VDDe

−k1
VDT
nφt

−k2

(
VDT
nφt

)2

. (43)

TABLE V

FO4 DELAY OF COMBINATIONAL GATES DETERMINED USING (44) AND

COMPARED TO BSIM4 SPICE SIMULATION OF 65-nm GP PROCESS AT

70 °C. FIT FROM 170 TO 750 mV WITH Vt = 386 mV AND n = 1.43

Since I0 is typically treated as a fitting constant, (43) can be
simplified by combining the constants k f , k0, and I0 into a
single term IF . This gives

tpd = Cload

IF
VDDe

−k1
VDT
nφt

−k2

(
VDT
nφt

)2

. (44)

In order to apply (44) to an inverter, separate delays for the
PFET and NFET can be calculated. A simpler approach used
in this paper is to calculate an average propagation delay that
simultaneously models the delay of both types of devices, but
this requires refitting I0 and VDT. Fig. 6 plots the FO4 delay of
a minimum-size inverter in the 65-nm GP process. The near-
threshold model is plotted against the BSIM4 model with the
near-threshold model fit from 135 to 700 mV (the inverters do
not function below 135 mV). The mean absolute error is 8.0%,
and the maximum absolute error is 13% with Vt = 386 mV,
n = 1.43, and (Cload/IF ) = 1.42 (ns/V ).

Equation (44) can be applied to a variety of gates by
fitting (Cload/IF ); Table V gives the corresponding error
(as compared to the BSIM4 model) for the FO4 delay of
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Fig. 6. Inverter FO4 delay, i.e., (44), plotted for entire VDD range against a
BSIM4 SPICE simulation of 65-nm GP process at 70 °C for a minimum-size
inverter driving an FO4 load. Fit from 135 to 700 mV, yielding Vt = 386 mV,
n = 1.43, and (Cload/IF ) = 1.42 (ns/V ).

several combinational gates: a minimum-size inverter, a four-
times minimum-width inverter, an eight-times minimum-width
inverter, a NAND2 gate, a NOR2 gate, and an AOI21 gate.

B. Energy Model

The total energy dissipated by a CMOS circuit, Etot, can be
expressed as the summation of a dynamic component, Edyn,
corresponding to the charging and discharging of capacitance
and a leakage component, Eleak, attributed to parasitic leakage
current. Assuming periodic operation, e.g., clocking, the total
energy can be defined in terms of energy per cycle. That is

Etot = αEdyn + Eleak (45)

where α is the switching activity factor; it models the common
case in which only a fraction (alpha) of the logic gates is
in the circuit switch. There are numerous physical mecha-
nisms behind leakage currents in modern MOSFETs [25], but
in current technology nodes operating in the near-threshold
region, sub-threshold drain-to-source current dominates [26].
The leakage energy is thus defined as

Eleak = Nl IOFFVDDTc (46)

where Tc is the cycle time (typically the critical path delay),
and Nl is the number of representative gates that are leaking
in a cycle. The dynamic energy of the circuit, Edyn, is defined
as

Edyn = CdynV 2
DD (47)

where Cdyn represents the entire switching capacitance, i.e.,
it includes glitching and crowbar current. The cycle time can
be defined in terms of a sequence of representative gates and
corresponding delays as

Tc = td td = tpd Ldp (48)

Fig. 7. Off-current, i.e., (51), plotted for the entire VDD range against a
BSIM4 SPICE simulation of 65-nm GP process at 70 °C for minimum-size
devices with Vt = 386 mV, n = 1.43. Fit from 135 to 700 mV, resulting in
η = 0.134, NFET I0 = 6.34 µA, and PFET I0 = 0.564 µA.

where td is the path delay, and Ldp is the number of gates on
the path each with a delay of tpd.

The off-current, IOFF, for a single gate can be defined in
terms of the subthreshold drain current from (24); letting
Vg = Vs = 0 and Vd = VDD gives

IOFF = I0e
−Vt
nφt

(
1 − e

−VDD
φt

)
. (49)

Assuming VDD is a few times larger than the thermal voltage
allows the terms in parentheses to be approximated as unity;
that is

IOFF = I0e
−Vt
nφt . (50)

In modern technologies, the inclusion of short-channel
effects in the off-current model can significantly improve
model accuracy. For example, ignoring the effects of DIBL
can result in an order of magnitude of error [6]. The effects
of DIBL can be included by explicitly making Vt a function
of Vds [12]. That is, the effective threshold voltage becomes
Vt −ηVDD, where η is the DIBL factor. Substituting this value
into (50) (in place of Vt ) gives

IOFF = I0e
ηVDD−Vt

nφt . (51)

Fig. 7 shows the application of the off-current equation to
an NFET and PFET in the 65-nm GP process. The values of
fitting bounds, n, and Vt are taken from the tpd model detailed
in Fig. 6. The least-squares fit value for η is 0.134, NFET
I0 = 6.34 µA, and PFET I0 = 0.564 µA. For the NFET, there
is a mean absolute error is 3.4% and a maximum absolute error
of 10%; for the PFET there is a mean absolute error is 3.7%
and a maximum absolute error of 15%.

The off-current equation (51) can be substituted into the
expression for leakage energy (46). That is

Eleak = I0VDD Nl Tce
ηVDD−Vt

nφt . (52)
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Fig. 8. Minimum-energy operating voltage versus activity factor (α). The
circuit consists of a linear chain of 20 minimum-size inverters with FO4 loads
in a 65-nm GP process at 70 °C.

TABLE VI

MINIMUM-ENERGY OPERATING VOLTAGE ERROR RELATIVE TO

SPICE SIMULATION OF BSIM4 MODEL. THE CORRESPONDING

PLOTS ARE DEPICTED IN FIG. 8

Combining this with the dynamic-energy equation (47) by way
of (45) yields in an expanded expression for energy

Etot = αCdynV 2
DD + I0VDD Nl Tce

ηVDD−Vt
nφt . (53)

Finally, expanding the term Tc with (48) and (44) results in
the full expression for energy per cycle

Etot = αCdynV 2
DD

+Nl Ldp
I0

IF
V 2

DDCloade
−k1

VDT
nφt

−k2

(
VDT
nφt

)2
+ ηVDD−Vt

nφt . (54)

Equation (54) is continuously differentiable, and can be used to
solve traditional and sensitivity-based optimization problems.
For example, in the 65-nm GP process, for a chain of FO4
inverters, Cdyn ≈ 1.8 fF ∗ Ldp. Using this value for Cdyn, with
Ldp = Nl = 20, and the parameters from Figs. 6 and 7, Fig. 8
gives the minimum-energy operating voltage as a function of
activity factor for the 65-nm GP process using (54). Fig. 8 also
shows the minimum-energy operating voltage when the weak-
inversion approximation [i.e., (23)] and the strong-inversion
approximation [i.e., (27)] are used as models for ION. The
errors for these approximations relative to SPICE simulation of
the BSIM4 model are listed in Table VI. The strong-inversion
approximation is a poor model for high activity factors, and the
weak-inversion approximation is a poor model for low activity
factors. The near-threshold model proves to be accurate for a
wide range of activity factors.

C. Statistical Delay Model

Timing and delay play a critical role in digital circuit opti-
mization, and in modern technologies the effects of parameter
variation on path delay cannot be ignored. In order to account
for parameter variation, static timing analysis (STA)—the most
prominent method of delay analysis in digital circuit design—
must incorporate statistical methods [e.g., by way statistical
static timing analysis (SSTA)] [27]–[29]. Parameter variation
can be modeled in a number of different ways, and a global
corner model with local random variation is accurate but
slightly pessimistic [30]. In this model, global variation affects
all devices in the same way (e.g., the TT, FS, SF, SS corners),
and local variation is truly random: i.e., neighboring identically
drawn devices may behave differently. With local variation, the
physical effects that dominate parameter variation depend on
the operating region. In the subthreshold and near-threshold
regions, parameter variation is dominated by random uncor-
related normally distributed Vt variation [31]. That is, when
modeling the delay of circuits operating subthreshold or near-
threshold region, for any particular global corner, the effects of
parameter variation can be modeled by considering the Vt of
each device as an independent normal random variable (RV).
The goal of this section is to generate a closed-form stochas-
tic delay model by way of the near-threshold delay model
[i.e., (44)] with the new assumption that Vt is an RV.

If X is a normally distributed RV with mean denoted as µX ,
and variance denoted as σ 2

X , then the corresponding probability
density function f (X) is given by

f (X) = 1

σX
√

2π
e
− (X−µX )2

2σ2
X . (55)

For g(X), a function of X , the expected value E can be
calculated as

E[g(X)] =
∫ ∞

−∞
g(X) f (X)dx (56)

and the variance Var as

Var[g(X)] = E[(g(X)2] − (E[g(X)])2. (57)

Treating Vt as a normally distributed RV with mean µVt

and standard deviation σVt , the expected value of tpd can be
calculated by applying tpd from (44) to (56). That is

E[tpd(Vt )]

=
∫ ∞

−∞

Cload

IF

VDD

σVt

√
2π

e
−k1

VDD−Vt
nφt

−k2

(
VDD−Vt

nφt

)2
− (Vt −µVt )2

2σ2
Vt dVt .

(58)

Similarly, applying tpd from (44) to (57) gives the variance as

Var[tpd(Vt )]

=
∫ ∞

−∞

C2
load

I 2
F

V 2
DD

σVt

√
2π

e
−2k1

VDD−Vt
nφt

−2k2

(
VDD−Vt

nφt

)2
− (Vt −µVt )2

2σ2
Vt dVt

− (E[tpd(Vt )])2. (59)

Owing to the form of (44), log(tpd(Vt )) is an RV with a
noncentral χ2 distribution, and tpd(Vt ) can be approximated
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TABLE VII

NEAR-THRESHOLD STATISTICAL DELAY MODEL (60) AND (61)

COMPARED TO MC SPICE SIMULATIONS OF BSIM4 STATISTICAL

MODEL FOR 65-nm GP CMOS FROM 300 TO 700 mV AT 100-mV

INTERVALS (AT TT-CORNER, 70 °C, AND WITH 10 K MC

TRIALS PER VDD ACCOUNTING FOR LOCAL PARAMETER

VARIATION). PATH DELAYS CORRESPONDING

TO CHAINS OF 2, 10, AND 20 INVERTERS

(WITH F04 LOADS AT EACH INVERTER)

ARE CONSIDERED

Fig. 9. Log-normal distribution for path delay, using an expected value and
variance calculated with the near-threshold statistical delay model (60) and
(61) compared to MC SPICE simulations of BSIM4 statistical model for a
chain of 20 minimum-size inverters (with FO4 loads at the output of each
inverter) in 65-nm GP CMOS with VDD = 300 mV (at TT-corner, 70 °C, and
with 10K MC trials accounting for local parameter variation).

as log-normal with expected value and variance given by (58)
and (59), respectively.10 The sum of log-normal RVs can be
approximated as log-normal [32], [33], giving closed-form
equations for the path delay td of a sequence of gates with
Ldp gates on the path [from(48)]

E[td (Vt ; Ldp)] =
∑

i∈{1,2,...,Ldp}
E[t i

pd(Vt )] (60)

Var[td (Vt ; Ldp)] =
∑

i∈{1,2,...,Ldp}
Var[t i

pd(Vt )] (61)

where t i
pd is the delay of the i th gate in the path.

With these statistical delay models, short-channel effects
cannot be completely ignored. As with the IOFF model
[i.e., (51)], DIBL can be easily incorporated by using an
effective threshold voltage of Vt − ηVDD in lieu of Vt . In the

10 X is a log-normal RV i f f log(X) is normally distributed.

Fig. 10. Log-normal distribution for path delay using an expected value and
variance calculated with the near-threshold statistical delay model [i.e., (60)
and (61)] compared to MC SPICE simulations of BSIM4 statistical model for
a chain of 20 minimum-size inverters (with FO4 loads at the output of each
inverter) in 65-nm GP CMOS with VDD = 700 mV (at TT-corner, 70 °C, and
with 10K MC trials accounting for local parameter variation).

65-nm GP process, incorporating the effects of DIBL into (44)
yields new parameters: η = 0.134, n = 1.61, (Cload/IF ) =
1.23 (ns/V ). Vt is normally distributed with mean µVt =
449 mV and standard deviation, σVt = 56.9 mV (computed
at the TT-corner from statistical BSIM4 models using the
methods from [31]). In order to measure model accuracy,
(60) and (61) are compared to Monte Carlo (MC) simulations
using SPICE and foundry-provided statistical BSIM4 models.
Path lengths of 2, 10, and 20 inverters are considered from
300 to 700 mV (at 100-mV intervals) with 10 K MC trials
at each VDD. The error in both the expected value and the
standard deviation are reported in Table VII. Figs. 9 and 10
depict the histograms generated from 10 K MC trials at 300
and 700 mV, respectively, with a path length of 20 invert-
ers; the corresponding log-normal distributions with expected
value and variance calculated from (60) and (61), respectively,
overlay each histogram.

Approximately 1.3 core-hours of computation time is
needed to perform each set of 10 000 MC BSIM4 transient
simulations on modern hardware with modern commercial
SPICE software. In practice, fewer trials per set may be
necessary; however, the computation cost of a broad analysis
(e.g., of a large gate set over a wide range of supply voltages
at multiple temperatures and multiple global process corners)
is significant. The computation cost associated with solving
(60) and (61) is comparatively negligible; the only significant
computation expense is incurred when calculating the fitting
constants in (44): 1.1e−2 core-hours when VDD is swept from
60 mV to 1 V with a 10-mV step size.

IV. RELATED WORK

MOS modeling dates back many decades, so the set of
works that present and discuss various approaches to it are
numerous (see [34] or [35] for a historical discussion). The
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models used in this paper are based on existing inversion-
charge models. The EKV [14], [16], [36] model and the ACM
[15] model are examples of accurate and mature continuous
compact inversion-charge models. The forthcoming BSIM6
[37] model is a new and purportedly extremely accurate
inversion-charge model that is still under development. The
work in this paper differs in that the models are reduced and
simplified to the point of limiting applicability to that of digital
circuit modeling.

The Lambert W function is currently supported in numer-
ous mathematical computation frameworks, e.g., Maple,
MATLAB, Mathematica, SciPy. Calhoun used it to define a
closed-form approximation for the minimum-energy operating
point of CMOS circuits in [3], and Ortiz-Conde used it to
model diode current [38] and surface potential in an undoped-
body MOSFET [39].

One of the primary goals of this paper is to give a simple and
continuous digital MOSFET model that can be used for hand
calculations of circuits operating near threshold. A number
of works, see [2] and [3], perform digital circuit analysis in
this region ([40] includes variability and derives a sophisticated
sub-threshold statistical delay model), but these works rely on
the weak-inversion approximation. The weak-inversion model
is inaccurate at and above the device threshold voltage, which
makes it difficult to perform analysis or establish trends for
circuits operating near threshold. The authors of [4] and [41]
address this shortcoming by using the EKV approximation, but
this makes hand analysis nearly impossible. Simple continuous
models such as [6] and [42] exist but are purely empirical, so
they lack the rigor and fitting-constant stability associated with
the analytical model presented in this paper.

V. CONCLUSION

This paper presented the near-threshold model [i.e., (41)],
which is a simplified transregional MOS drain-current model
designed specifically for digital circuit analysis of near-
threshold circuits. The near-threshold model is continuous and
continuous in the first derivative, and it accurately models
ION over a wide supply voltage range. The model derivation
follows that of previous inversion-charge-based models with
the addition of a new exact expression for inversion charge
(19) and a new simplified inversion-charge approximation,
i.e., (34)–(36). The exact expression for inversion charge may
improve the accuracy of certain analyses, e.g., small signal;
verification of this is left as future work. The near-threshold
model was validated in four modern CMOS technologies
against BSIM4 SPICE simulations, and it was used to solve a
circuit analysis problem: finding the minimum-energy operat-
ing point of a digital circuit.

As with all models, the near-threshold model has limita-
tions. In a technology with extremely high or low nominal
threshold voltages, the model accuracy may degrade. In the
technologies examined in this paper, the HVT devices tended
to have higher error rates than those of regular devices (see
Table IV). Explicitly including short-channel effects within
the model may somewhat mitigate this problem; however,
this is left as future work. Similarly, model accuracy may

degrade when modeling ION as a function of transistor length
or width unless short-channel effects are explicitly included
(as discussed in Section II-C). This problem is apparent in
most compact models, but examining it in the context of the
near-threshold model is left as future work.
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